《(精品)用MATLAB求解非线性规划.ppt》由会员分享,可在线阅读,更多相关《(精品)用MATLAB求解非线性规划.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、用MATLAB软件求解,其输入格式输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.x,fval=quaprog(.);7.x,fval,exitflag=quaprog(.);8.x,fval,exitflag,output=quaprog(.);1、二次规划、二次规划
2、用MATLAB求解非线性规划例例1 1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t.x1+x22 -x1+2x22 x10,x20 1、写成标准形式写成标准形式:2、输入命令输入命令:H=1-1;-1 2;c=-2;-6;A=1 1;-1 2;b=2;2;Aeq=;beq=;VLB=0;0;VUB=;x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果运算结果为:x=0.6667 1.3333 z=-8.2222s.t.1.首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);2
3、、一般非线性规划、一般非线性规划 其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:3.建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,
4、Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,exitflag,output=fmincon(.)输出极值点M文件迭代的初值参数说明变量上下限注意:注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在
5、每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。1、写成标准形式写成标准形式:s.t.2x1+3x2 6 s.t x1+4x2 5 x1,x2 0例例22、先建立先建立M-文件文件 fun3.m:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)23、再建立主程序youh2.m:x0=1;1;A=2 3;1 4;b=6;5;Aeq=;beq=;VLB=0;0;VUB=;x,fval=fmincon(fun3,x0,A,b,Aeq,beq
6、,VLB,VUB)4、运算结果为:运算结果为:x=0.7647 1.0588 fval=-2.02941先建立先建立M文件文件 fun4.m,定义目标函数定义目标函数:function f=fun4(x);f=exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);x1+x2=0 s.t.1.5+x1x2-x1-x2 0 -x1x2 10 0例例32再建立再建立M文件文件mycon.m定义非线性约束:定义非线性约束:function g,ceq=mycon(x)g=x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-
7、10;3主程序主程序youh3.m为为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon)3.运算结果为运算结果为:x=-1.2250 1.2250 fval=1.8951 例4 1先建立先建立M-文件文件fun.m定义目标函数定义目标函数:function f=fun(x);f=-2*x(1)-x(2);2再建立再建立M文件文件mycon2.m定义非线性约束:定义非线性约束:function g,ceq=mycon2(x)g=x(1)2+x(2)2-25;x(1)2-x
8、(2)2-7;3.主程序主程序fxx.m为为:x0=3;2.5;VLB=0 0;VUB=5 10;x,fval,exitflag,output =fmincon(fun,x0,VLB,VUB,mycon2)4.运算结果为运算结果为:x=4.0000 3.0000fval=-11.0000exitflag=1output=iterations:4 funcCount:17 stepsize:1 algorithm:1x44 char firstorderopt:cgiterations:应用实例:应用实例:供应与选址供应与选址 某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,
9、距离单位:千米)及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?(一)、建立模型(一)、建立模型 记工地的位置为记工地的位置为(ai,bi),水泥日用量为水泥日用量为di,i=1,6;料场位置料场位置为为(xj,yj),日储量为日储量为ej,j=1,2;从料场从料场j向工地向工地i的运送量为的运送
10、量为Xij。当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。(二)使用临时料场的情形(二)使用临时料场的情形 使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:设X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 编写程序gying1.m:cleara=1.25 8.75 0.5 5
11、.75 3 7.25;b=1.25 0.75 4.75 5 6.5 7.75;d=3 5 4 7 6 11;x=5 2;y=1 7;e=20 20;for i=1:6 for j=1:2 aa(i,j)=sqrt(x(j)-a(i)2+(y(j)-b(i)2);endendCC=aa(:,1);aa(:,2);A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;B=20;20;Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
12、0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1;beq=d(1);d(2);d(3);d(4);d(5);d(6);VLB=0 0 0 0 0 0 0 0 0 0 0 0;VUB=;x0=1 2 3 0 1 0 0 1 0 1 0 1;xx,fval=linprog(CC,A,B,Aeq,beq,VLB,VUB,x0)计算结果为:计算结果为:x=3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000fval
13、=136.2275(三)改建两个新料场的情形(三)改建两个新料场的情形 改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:function f=liaoch(x)a=1.25 8.75 0.5 5.75 3 7.25;b=1.25 0.75 4.75 5 6.5 7.75;d=3 5 4 7 6 11;e=20 20;f1=0;for i=1:6 s(i)=sqrt(x(13)-a(i)2+(x(14)-b(i)2);f1=s(i)*x(i)+f1;endf2=0;for i=7:12 s(i)=sqrt(x(
14、15)-a(i-6)2+(x(16)-b(i-6)2);f2=s(i)*x(i)+f2;endf=f1+f2;设 X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6 X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 x1=X13,y1=X14,x2=X15,y2=X16 (1)先编写M文件liaoch.m定义目标函数:(2)取初值为线性规划的计算结果及临时料场的坐标:x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;编写主程序gying2.m.clear%x0=2 2 2 2 2
15、 2 2 2 2 2 2 2 2 2 2 2;x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0;B=20;20;Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
16、 0 0 0 1 0 0 0 0 0 1 0 0 0 0;beq=3 5 4 7 6 11;vlb=zeros(12,1);-inf;-inf;-inf;-inf;vub=;x,fval,exitflag=fmincon(liaoch,x0,A,B,Aeq,beq,vlb,vub)(3)计算结果为:x=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867fval=105.4626exitflag=1(4)若修改主程序gying2.m,取初值为上面的计算结果:x0=
17、3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867得结果为:x=3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852fval=103.4760exitflag=1总的吨千米数比上面结果略优.(5)若取初值为:x0=3 5 4 7 1 0 0 0 0 0 5 11 5.6348 4.8687 7.2479 7.7499,则计算结果为:x=3.0000 5.0000 4.0000 7.0000 1.0000 0 0 0 0 0 5.0000 11.0000 5.6959 4.9285 7.2500 7.7500fval=89.8835exitflag=1总的吨千米数89.8835比上面结果更好.通过此例可看出fmincon函数在选取初值上的重要性.