《贵州铜仁-word解析.doc》由会员分享,可在线阅读,更多相关《贵州铜仁-word解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2020年贵州省铜仁市中考数学试卷一选择题(共10小题)13的绝对值是()A3B3CD2我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,39000用科学记数法表示为()A39103B3.9104C3.9104D391033如图,直线ABCD,370,则1()A70B100C110D1204一组数据4,10,12,14,则这组数据的平均数是()A9B10C11D125已知FHBEAD,它们的周长分别为30和15,且FH6,则EA的长为()A3B2C4D56实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()AabBabCabDab7已知等边三角形一边上的
2、高为2,则它的边长为()A2B3C4D48如图,在矩形ABCD中,AB3,BC4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,ADP的面积为y,那么y与x之间的函数关系的图象大致是()ABCD9已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x26x+k+20的两个根,则k的值等于()A7B7或6C6或7D610如图,正方形ABCD的边长为4,点E在边AB上,BE1,DAM45,点F在射线AM上,且AF,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF下列结论:ECF的面积为;AEG的周长为8;EG2D
3、G2+BE2;其中正确的是()ABCD二填空题(共8小题)11因式分解:a2+aba 12方程2x+100的解是 13已知点(2,2)在反比例函数y的图象上,则这个反比例函数的表达式是 14函数y中,自变量x的取值范围是 15从2,1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于 16设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于 cm17如图,在矩形ABCD中,AD4,将A向内翻析,点A落在BC上,记为A1,折痕为DE若将B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB 18观
4、察下列等式:2+22232;2+22+23242;2+22+23+24252;2+22+23+24+25262;已知按一定规律排列的一组数:220,221,222,223,224,238,239,240,若220m,则220+221+222+223+224+238+239+240 (结果用含m的代数式表示)三解答题(共7小题)19(1)计算:2(1)2020()0(2)先化简,再求值:(a+)(),自选一个a值代入求值20如图,BE,BFEC,ACDF求证:ABCDEF21某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生
5、对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m ,n ;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?22如图,一艘船由西向东航行,在A处测得北偏东60方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?23某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一
6、个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?24如图,AB是O的直径,C为O上一点,连接AC,CEAB于点E,D是直径AB延长线上一点,且BCEBCD(1)求证:CD是O的切线;(2)若AD8,求CD的长25如图,已知抛物线yax2+bx+6经过两点A(1,0),B(
7、3,0),C是抛物线与y轴的交点(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得CMN90,且CMN与OBC相似,如果存在,请求出点M和点N的坐标2020年贵州省铜仁市中考数学试卷参考答案与试题解析一选择题(共10小题)13的绝对值是()A3B3CD【分析】直接利用绝对值的定义分析得出答案【解答】解:3的绝对值是:3故选:B2我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,390
8、00用科学记数法表示为()A39103B3.9104C3.9104D39103【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于39000有5位,所以可以确定n514【解答】解:390003.9104故选:B3如图,直线ABCD,370,则1()A70B100C110D120【分析】直接利用平行线的性质得出12,进而得出答案【解答】解:直线ABCD,12,370,1218070110故选:C4一组数据4,10,12,14,则这组数据的平均数是()A9B10C11D12【分析】对于n个数x1,x2,xn,则(x1+x2+xn)就叫做这n个数的算术平均
9、数,据此列式计算可得【解答】解:这组数据的平均数为(4+10+12+14)10,故选:B5已知FHBEAD,它们的周长分别为30和15,且FH6,则EA的长为()A3B2C4D5【分析】根据相似三角形的周长比等于相似比解答【解答】解:FHB和EAD的周长分别为30和15,FHB和EAD的周长比为2:1,FHBEAD,2,即2,解得,EA3,故选:A6实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()AabBabCabDab【分析】根据数轴即可判断a和b的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解【解答】解:根据数轴可得:a0,b0,且|a|b|,则ab,ab,a
10、b,ab故选:D7已知等边三角形一边上的高为2,则它的边长为()A2B3C4D4【分析】根据等边三角形的性质:三线合一,利用勾股定理可求解即可【解答】解:根据等边三角形:三线合一,设它的边长为x,可得:,解得:x4,x4(舍去),故选:C8如图,在矩形ABCD中,AB3,BC4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,ADP的面积为y,那么y与x之间的函数关系的图象大致是()ABCD【分析】分别求出0x4、4x7时函数表达式,即可求解【解答】解:由题意当0x4时,yADAB346,当4x7时,yPDAD(7x)4142x故选:D9已知m、n、4分别是等腰三角形(非等边三角
11、形)三边的长,且m、n是关于x的一元二次方程x26x+k+20的两个根,则k的值等于()A7B7或6C6或7D6【分析】当m4或n4时,即x4,代入方程即可得到结论,当mn时,即(6)24(k+2)0,解方程即可得到结论【解答】解:当m4或n4时,即x4,方程为4264+k+20,解得:k6,当mn时,即(6)24(k+2)0,解得:k7,综上所述,k的值等于6或7,故选:B10如图,正方形ABCD的边长为4,点E在边AB上,BE1,DAM45,点F在射线AM上,且AF,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF下列结论:ECF的面积为;AEG的周长为
12、8;EG2DG2+BE2;其中正确的是()ABCD【分析】先判断出H90,进而求出AHHF1BE进而判断出EHFCBE(SAS),得出EFEC,HEFBCE,判断出CEF是等腰直角三角形,再用勾股定理求出EC217,即可得出正确;先判断出四边形APFH是矩形,进而判断出矩形AHFP是正方形,得出APPHAH1,同理:四边形ABQP是矩形,得出PQ4,BQ1,FQ5,CQ3,再判断出FPGFQC,得出,求出PG,再根据勾股定理求得EG,即AEG的周长为8,判断出正确;先求出DG,进而求出DG2+BE2,在求出EG2,判断出错误,即可得出结论【解答】解:如图,在正方形ABCD中,ADBC,ABBC
13、AD4,BBAD90,HAD90,HFAD,H90,HAF90DAM45,AFHHAFAF,AHHF1BEEHAE+AHABBE+AH4BC,EHFCBE(SAS),EFEC,HEFBCE,BCE+BEC90,HEF+BEC90,FEC90,CEF是等腰直角三角形,在RtCBE中,BE1,BC4,EC2BE2+BC217,SECFEFECEC2,故正确;过点F作FQBC于Q,交AD于P,APF90HHAD,四边形APFH是矩形,AHHF,矩形AHFP是正方形,APPHAH1,同理:四边形ABQP是矩形,PQAB4,BQAP1,FQFP+PQ5,CQBCBQ3,ADBC,FPGFQC,PG,AG
14、AP+PG,在RtEAG中,根据勾股定理得,EG,AEG的周长为AG+EG+AE+38,故正确;AD4,DGADAG,DG2+BE2+1,EG2()2,EG2DG2+BE2,故错误,正确的有,故选:C二填空题(共8小题)11因式分解:a2+abaa(a+b1)【分析】原式提取公因式即可【解答】解:原式a(a+b1)故答案为:a(a+b1)12方程2x+100的解是x5【分析】方程移项,把x系数化为1,即可求出解【解答】解:方程2x+100,移项得:2x10,解得:x5故答案为:x513已知点(2,2)在反比例函数y的图象上,则这个反比例函数的表达式是y【分析】把点(2,2)代入反比例函数y(k
15、0)中求出k的值,从而得到反比例函数解析式【解答】解:反比例函数y(k0)的图象上一点的坐标为(2,2),k224,反比例函数解析式为y,故答案为:y14函数y中,自变量x的取值范围是x2【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x40,可求x的范围【解答】解:2x40解得x215从2,1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于【分析】画树状图得出所有等可能结果,从中找到该点在第三象限的结果数,再利用概率公式求解可得【解答】解:画树状图如下共有6种等可能情况,该点在第三象限的情况数有(2,1)和(1,2)这2种结果,该点在第三象限的概率等于,故
16、答案为:16设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于7或17cm【分析】分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论【解答】解:分两种情况:当EF在AB,CD之间时,如图:AB与CD的距离是12cm,EF与CD的距离是5cm,EF与AB的距离为1257(cm)当EF在AB,CD同侧时,如图:AB与CD的距离是12cm,EF与CD的距离是5cm,EF与AB的距离为12+517(cm)综上所述,EF与AB的距离为7cm或17cm故答案为:7或1717如图,在矩形ABCD中,AD4,
17、将A向内翻析,点A落在BC上,记为A1,折痕为DE若将B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB【分析】依据A1DB1A1DC(AAS),即可得出A1CA1B1,再根据折叠的性质,即可得到A1CBC2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长【解答】解:由折叠可得,A1DAD4,AEA1D90,BA1EB1A1E,BA1B1A1,BA1B1E90,EA1B1+DA1B190BA1E+CA1D,DA1B1CA1D,又CA1B1D,A1DA1D,A1DB1A1DC(AAS),A1CA1B1,BA1A1CBC2,RtA1CD中,CD,AB,故答案为:18观察下列等式:2+
18、22232;2+22+23242;2+22+23+24252;2+22+23+24+25262;已知按一定规律排列的一组数:220,221,222,223,224,238,239,240,若220m,则220+221+222+223+224+238+239+240m(2m1)(结果用含m的代数式表示)【分析】由题意可得220+221+222+223+224+238+239+240220(1+2+22+219+220)220(1+2212)220(22021),再将220m代入即可求解【解答】解:220m,220+221+222+223+224+238+239+240220(1+2+22+219
19、+220)220(1+2212)m(2m1)故答案为:m(2m1)三解答题(共7小题)19(1)计算:2(1)2020()0(2)先化简,再求值:(a+)(),自选一个a值代入求值【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值【解答】解:(1)原式2212141210;(2)原式,当a0时,原式320如图,BE,BFEC,ACDF求证:ABCDEF【分析】首先利用平行线的性质得出ACBDFE,进而利用全等三角形的判定定理ASA,
20、进而得出答案【解答】证明:ACDF,ACBDFE,BFCE,BCEF,在ABC和DEF中,ABCDEF(ASA)21某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m36,n16;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?【分析】(1)根据选择
21、书法的学生人数和所占的百分比,可以求得该校参加这次问卷调查的学生人数,然后根据扇形统计图中选择篮球的占28%,即可求得选择篮球的学生人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据和(1)中的结果,可以得到m、n的值;(3)根据统计图中的数据,可以计算出该校选择“乒乓球”课外兴趣小组的学生有多少人【解答】解:(1)该校参加这次问卷调查的学生有:2020%100(人),选择篮球的学生有:10028%28(人),补全的条形统计图如右图所示;(2)m%100%36%,n%100%16%,故答案为:36,16;(3)200016%320(人),答:该校选择“乒乓球”课外兴趣小组的学生有
22、320人22如图,一艘船由西向东航行,在A处测得北偏东60方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?【分析】过C作CDAB于点D,根据方向角的定义及余角的性质求出BCA30,ACD60,证ACB30BCA,根据等角对等边得出BCAB12,然后解RtBCD,求出CD即可【解答】解:过点C作CDAB,垂足为D如图所示:根据题意可知BAC903030,DBC903060,DBCACB+BAC,BAC30ACB,BCAB60km,在RtBCD中,CDB90,BDC60,sinBCD,sin60
23、,CD60sin606030(km)47km,这艘船继续向东航行安全23某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?【分析】(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,根据用3600元购买排
24、球的个数要比用3600元购买篮球的个数多10个列出方程,解之即可得出结论;(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案【解答】解:(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,依题意有+10,解得x40,经检验,x40是原方程的解,90%x90%4036故每一个篮球的进价是40元,每一个排球的进价是36元;(2)设文体商店计划购进篮球m个,总利润y元,则y(10040)m+(9036)(100m)6m+5400,依题意有,解得0m25且m为整数,m为整数,y随m的增大而增大,m25时,y最大,这时y6
25、25+54005550,1002575(个)故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元24如图,AB是O的直径,C为O上一点,连接AC,CEAB于点E,D是直径AB延长线上一点,且BCEBCD(1)求证:CD是O的切线;(2)若AD8,求CD的长【分析】(1)连接OC,根据圆周角定理得到ACB90,根据余角的性质得到AECB,求得ABCD,根据等腰三角形的性质得到AACO,等量代换得到ACOBCD,求得DCO90,于是得到结论;(2)设BCk,AC2k,根据相似三角形的性质即可得到结论【解答】(1)证明:连接OC,AB是O的直径,ACB90,CEAB,CEB
26、90,ECB+ABCABC+CAB90,AECB,BCEBCD,ABCD,OCOA,AACO,ACOBCD,ACO+BCOBCO+BCD90,DCO90,CD是O的切线;(2)解:ABCE,tanAtanBCE,设BCk,AC2k,DD,ABCD,ACDCBD,AD8,CD425如图,已知抛物线yax2+bx+6经过两点A(1,0),B(3,0),C是抛物线与y轴的交点(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点
27、N使得CMN90,且CMN与OBC相似,如果存在,请求出点M和点N的坐标【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)过点P作PFy轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,2m2+4m+6),则点F的坐标为(m,2m+6),进而可得出PF的长度,利用三角形的面积公式可得出SPBC3m2+9m,配方后利用二次函数的性质即可求出PBC面积的最大值;(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可【解答】
28、解:(1)将A(1,0)、B(3,0)代入yax2+bx+6,得:,解得:,抛物线的解析式为y2x2+4x+6(2)过点P作PFy轴,交BC于点F,如图1所示当x0时,y2x2+4x+66,点C的坐标为(0,6)设直线BC的解析式为ykx+c,将B(3,0)、C(0,6)代入ykx+c,得:,解得:,直线BC的解析式为y2x+6设点P的坐标为(m,2m2+4m+6),则点F的坐标为(m,2m+6),PF2m2+4m+6(2m+6)2m2+6m,SPBCPFOB3m2+9m3(m)2+,当m时,PBC面积取最大值,最大值为点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,0m3(3)存在点
29、M、点N使得CMN90,且CMN与OBC相似如图2,CMN90,当点M位于点C上方,过点M作MDy轴于点D,CDMCMN90,DCMNCM,MCDNCM,若CMN与OBC相似,则MCD与NCM相似,设M(a,2a2+4a+6),C(0,6),DC2a2+4a,DMa,当时,COBCDMCMN,解得,a1,M(1,8),此时NDDM,N(0,),当时,COBMDCNMC,解得a,M(,),此时N(0,)如图3,当点M位于点C的下方,过点M作MEy轴于点E,设M(a,2a2+4a+6),C(0,6),EC2a24a,EMa,同理可得:或2,CMN与OBC相似,解得a或a3,M(,)或M(3,0),此时N点坐标为(0,)或(0,)综合以上得,M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,),使得CMN90,且CMN与OBC相似