2014中考压轴题精选.doc

上传人:asd****56 文档编号:83452583 上传时间:2023-03-31 格式:DOC 页数:24 大小:320KB
返回 下载 相关 举报
2014中考压轴题精选.doc_第1页
第1页 / 共24页
2014中考压轴题精选.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2014中考压轴题精选.doc》由会员分享,可在线阅读,更多相关《2014中考压轴题精选.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、菁优网2014中考压轴题精选 2014中考压轴题精选一解答题(共7小题)1(2013济宁)如图,直线y=x+4与坐标轴分别交于点A、B,与直线y=x交于点C在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外)(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值2(2013济南)

2、如图,点A的坐标是(2,0),点B的坐标是(6,0),点C在第一象限内且OBC为等边三角形,直线BC交y轴于点D,过点A作直线AEBD,垂足为E,交OC于点F(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由3(2013大连)如图,一次函数y=x+4的图象与x轴、y轴分别相交于点A、BP是射线BO上的一个动点(点P不与点B重合),过点P作PCAB,垂足为C,在射线CA上截取CD=CP,连接PD设BP=t(1)t为何值时,点D恰好与点A重合?(2)设PCD与AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围4(

3、2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF(1)证明:BAC=DAC,AFD=CFE(2)若ABCD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得EFD=BCD,并说明理由5(2013上海)如图,在ABC中,ACB=90,BA,点D为边AB的中点,DEBC交AC于点E,CFAB交DE的延长线于点F(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:B=A+DGC6(2013锦州)如图,点O是菱形ABCD对角线的交点,DEAC,CEBD,连接OE求证:OE=BC7(201

4、3枣庄)如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,ABOC,AOC=90,BCO=45,BC=12,点C的坐标为(18,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式2014中考压轴题精选参考答案与试题解析一解答题(共7小题)1(2013济宁)如图,直线y=x+4与坐标轴分别交于点A、B,与直线y=x交于点C在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动分别过点P、Q作x轴的垂线

5、,交直线AB、OC于点E、F,连接EF若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外)(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值考点:一次函数综合题菁优网版权所有专题:压轴题分析:(1)根据直线y=x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EPBO,得出=,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可解答:解:(1)直线y=x+4

6、与坐标轴分别交于点A、B,x=0时,y=4,y=0时,x=8,=,当t秒时,QO=FQ=t,则EP=t,EPBO,=,AP=2t,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则OQ=FQ=t,PA=2t,QP=8t2t=83t,83t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,OQ=t,PA=2t,OP=82t,QP=t(82t)=3t8,t=3t8,解得:t=4;(3)如图1,当Q在P点的左边时,OQ=t,PA=2t,QP=8t2t=83t,S矩形PEFQ=QPQF=(8

7、3t)t=8t3t2,当t=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,OQ=t,PA=2t,2t8t,t,QP=t(82t)=3t8,S矩形PEFQ=QPQF=(3t8)t=3t28t,当点P、Q其中一点停止运动时,另一点也停止运动,t4,当t=时,S矩形PEFQ的最大,t=4时,S矩形PEFQ的最大值为:34284=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键2(2013济南)如图,点A的坐标是(2,0),点B的坐标是(6,0),点C在第一象限内且OBC为等边三角

8、形,直线BC交y轴于点D,过点A作直线AEBD,垂足为E,交OC于点F(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由考点:一次函数综合题菁优网版权所有专题:综合题分析:(1)根据OBC是等边三角形,可得OBC=60,在RtPBD中,解得OD的长度,得出点D的坐标,利用待定系数法求出直线BD的解析式即可;(2)分别求出BAE和AFO的度数,即可得出OF=OA=2(3)在RtABE中,先求出BE,继而得出CE=OF,证明COEOBF,可得BF和OE的数量关系解答:解:(1)OBC是等边三角形,OBC=60,OC=BC=OB,点B

9、的坐标为(6,0),OB=6,在RtOBD中,OBC=60,OB=6,ODB=30,BD=12,OD=6,点D的坐标为(0,6),设直线BD的解析式为y=kx+b,则可得,解得:,直线BD的函数解析式为y=x+6(2)OCB=60,CEF=90,CFE=30,AFO=30(对顶角相等),又OBC=60,AEB=90,BAE=30,BAE=AFO,OF=OA=2(3)连接BF,OE,如图所示:A(2,0),B(6,0),AB=8,在RtABE中,ABE=60,AB=8,BE=ABcosABE=4,CE=BCBE=2,OF=CE=2,在COE和OBF中,COEOBF(SAS),OE=BF点评:本题

10、考查了一次函数的综合,解答本题的关键是熟练掌握待定系数法及数形结合思想的运用,对于此类综合性较强的题目,要求同学们具有扎实的基本功,熟练掌握学过的性质定理及常见解题方法3(2013大连)如图,一次函数y=x+4的图象与x轴、y轴分别相交于点A、BP是射线BO上的一个动点(点P不与点B重合),过点P作PCAB,垂足为C,在射线CA上截取CD=CP,连接PD设BP=t(1)t为何值时,点D恰好与点A重合?(2)设PCD与AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围考点:一次函数综合题菁优网版权所有分析:(1)首先求出点A、B的坐标,然后在RtBCP中,解直角三角形求出BC

11、,CP的长度;进而利用关系式AB=BC+CD,列方程求出t的值;(2)点P运动的过程中,分为四个阶段,需要分类讨论:当0t时,如题图所示,重合部分为PCD;当t4时,如答图1所示,重合部分为四边形ACPE;当4t时,如答图2所示,重合部分为ACE;当t时,无重合部分解答:解:(1)在一次函数解析式y=x+4中,令x=0,得y=4;令y=0,得x=3,A(3,0),B(0,4)在RtAOB中,OA=3,OB=4,由勾股定理得:AB=5在RtBCP中,CP=PBsinABO=t,BC=PBcosABO=t,CD=CP=t若点D恰好与点A重合,则BC+CD=AB,即t+t=5,解得:t=,当t=时,

12、点D恰好与点A重合(2)当点P与点O重合时,t=4;当点C与点A重合时,由BC=BA,即t=5,得t=点P在射线BO上运动的过程中:当0t时,如题图所示:此时S=SPCD=CPCD=tt=t2;当t4时,如答图1所示,设PD与x轴交于点EBD=BC+CD=t+t=t,过点D作DNy轴于点N,则ND=BDsinABO=t=t,BN=BDcosABO=t=tPN=BNBP=tt=t,ON=BNOB=t4NDx轴,即,得:OE=287tAE=OAOE=3(287t)=7t25故S=SPCDSADE=CPCDAEON=t2(7t25)(t4)=t2+28t50;当4t时,如答图2所示,设PC与x轴交于

13、点EAC=ABBC=5t,tanOAB=,CE=ACtanOAB=(5t)=t故S=SACE=ACCE=(5t)(t)=t2t+;当t时,无重合部分,故S=0综上所述,S与t的函数关系式为:S=点评:本题考查了典型的运动型综合题,且计算量较大,有一定的难度解题关键在于:一,分析点P的运动过程,区分不同的阶段,分类讨论计算,避免漏解;二,善于利用图形面积的和差关系计算所求图形的面积;三,认真计算,避免计算错误4(2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF(1)证明:BAC=DAC,AFD=CFE(2)若ABCD,试证明四边形ABCD是

14、菱形;(3)在(2)的条件下,试确定E点的位置,使得EFD=BCD,并说明理由考点:菱形的判定与性质;全等三角形的判定与性质菁优网版权所有专题:压轴题分析:(1)首先利用SSS定理证明ABCADC可得BAC=DAC,再证明ABFADF,可得AFD=AFB,进而得到AFD=CFE;(2)首先证明CAD=ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形;(3)首先证明BCFDCF可得CBF=CDF,再根据BECD可得BEC=DEF=90,进而得到EFD=BCD解答:(1)证明:在ABC和ADC中,ABCADC(SSS),BA

15、C=DAC,在ABF和ADF中,ABFADF(SAS),AFD=AFB,AFB=CFE,AFD=CFE;(2)证明:ABCD,BAC=ACD,又BAC=DAC,CAD=ACD,AD=CD,AB=AD,CB=CD,AB=CB=CD=AD,四边形ABCD是菱形;(3)当EBCD时,即E为过B且和CD垂直时垂线的垂足,EFD=BCD,理由:四边形ABCD为菱形,BC=CD,BCF=DCF,在BCF和DCF中,BCFDCF(SAS),CBF=CDF,BECD,BEC=DEF=90,EFD=BCD点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明

16、线段和角相等的重要工具5(2013上海)如图,在ABC中,ACB=90,BA,点D为边AB的中点,DEBC交AC于点E,CFAB交DE的延长线于点F(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:B=A+DGC考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线菁优网版权所有分析:(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得ADG=G,再证明B=DCB,A=DCA,然后再推出1=DCB=B,再由A+ADG=1可得A+G=B解

17、答:证明:(1)DEBC,CFAB,四边形DBCF为平行四边形,DF=BC,D为边AB的中点,DEBC,DE=BC,EF=DFDE=BCCB=CB,DE=EF;(2)DBCF,ADG=G,ACB=90,D为边AB的中点,CD=DB=AD,B=DCB,A=DCA,DGDC,DCA+1=90,DCB+DCA=90,1=DCB=B,A+ADG=1,A+G=B点评:此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出ADG=G,1=B掌握在直角三角形中,斜边上的中线等于斜边的一半6(2013锦州)如图,点O是菱形ABCD对角线的交点,DEAC,CEBD,连接OE求证:OE=BC考点:

18、菱形的性质;矩形的判定与性质菁优网版权所有专题:证明题分析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明OCED是矩形,利用勾股定理即可求出BC=OE解答:证明:DEAC,CEBD,四边形OCED是平行四边形,四边形ABCD是菱形,COD=90,四边形OCED是矩形,DE=OC,OB=OD,BOC=ODE=90,BC=,OE=,BC=OE点评:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键7(2013枣庄)如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,ABOC,AOC

19、=90,BCO=45,BC=12,点C的坐标为(18,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式考点:一次函数综合题菁优网版权所有分析:(1)先过点B作BFx轴于F,根据BCO=45,BC=,求出CF=BF的长,再根据点C的坐标,求出AB=OF的值,从而求出点B的坐标(2)先过点D作DGy轴于点G,根据ABDG,得出ODGOBA,再根据AB=6,OA=12,求出DG与OG的值,从而求出点D与点E的坐标,最后设直线DE的解析式为y=kx+b(k0),再把D与E点的坐标代入,即可求出直线DE的解析式解答:解:(1)过点B作BFx轴于F,在RtBCF中,BCO=45,CBF=45,BC=,CF=BF=12,点C的坐标为(18,0),AB=OF=1812=6点B的坐标为(6,12)(2)过点D作DGy轴于点GABDG,ODGOBA,=,AB=6,OA=12,DG=4,OG=8D(4,8),E(0,4),设直线DE的解析式为y=kx+b(k0),将D(4,8),E(0,4)代入,得, 解得 ,直线DE解析式为y=x+4点评:此题考查了一次函数的综合,用到的知识点是一次函数的图象与性质、相似三角形的判定与性质,关键是根据相似求出线段的长度得出点的坐标2010-2014 菁优网

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁