11.3_角平分线的性质65192.ppt

上传人:赵** 文档编号:82665115 上传时间:2023-03-26 格式:PPT 页数:23 大小:2.56MB
返回 下载 相关 举报
11.3_角平分线的性质65192.ppt_第1页
第1页 / 共23页
11.3_角平分线的性质65192.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《11.3_角平分线的性质65192.ppt》由会员分享,可在线阅读,更多相关《11.3_角平分线的性质65192.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、角平分线的性质角平分线的性质学习目标:学习目标:1.通过操作、验证等方式,通过操作、验证等方式,掌握掌握角平分线的性质角平分线的性质定理定理 2.能能运用运用角的平分线性质定理角的平分线性质定理 解决解决简单的几何问题简单的几何问题.复习提问复习提问1 1、角平分线角平分线的概念的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12复习提问复习提问 2 2、点到直线距离、点到直线距离:从直线外一点从直线外一点到这条直线的垂线段到这条直线的垂线段的的长度长度,叫做叫做点到直线的距离。点到直线的距离。OPAB线段的线段的长度长度 如图如图,是一个平分角的仪器是一个平分角的

2、仪器,其中其中AB=AD,BC=DC.将点将点A放在角的顶点放在角的顶点,AB和和AD沿着角的两边放下沿着角的两边放下,沿沿AC画一条射线画一条射线AE,AE就是角平分线就是角平分线.你能说明它的道你能说明它的道理吗理吗?经过上面的探索,你能得到作已知角的平分经过上面的探索,你能得到作已知角的平分线的方法吗?小组内互相交流一下吧!线的方法吗?小组内互相交流一下吧!探究探究1-想一想想一想AOBCDE尺规作图:尺规作图:作法:作法:1 1、以、以_ _ _为圆心,为圆心,_长为半径作圆弧,长为半径作圆弧,与角的两边分别交于与角的两边分别交于C C、D D两点;两点;2 2、分别以分别以_为圆心,

3、为圆心,_的长为半径的长为半径作弧,两条圆弧交于作弧,两条圆弧交于AOBAOB内一点内一点_;3 3、作射线、作射线_;_就是所求作的射线。就是所求作的射线。点点O O适当适当C、D超过超过CDCD一半一半EOEOE观观察察察察领领悟作法,探索思考悟作法,探索思考悟作法,探索思考悟作法,探索思考证证明方法:明方法:明方法:明方法:A A为什么为什么OCOC是角平分线呢?是角平分线呢?想一想:想一想:已知:已知:OM=ONOM=ON,MC=NCMC=NC。求证:求证:OCOC平分平分AOBAOB。证明证明:在:在OMCOMC和和ONCONC中,中,OM=ONOM=ON,MC=NCMC=NC,OC

4、=OCOC=OC,OMC ONCOMC ONC(SSSSSS)MOC=NOCMOC=NOC 即:即:OCOC平分平分AOBAOBABOAOEBCPD 将将 AOBAOB对折对折,再折出一个直角三角形再折出一个直角三角形(使第一条折痕为斜边使第一条折痕为斜边),),然后展开然后展开,观察两次折叠形成的三条折痕观察两次折叠形成的三条折痕,你能得出什么结论你能得出什么结论?可以看一看可以看一看,第一条折痕是第一条折痕是AOBAOB的平分线的平分线OC,OC,第二次折叠第二次折叠形成的两条折痕形成的两条折痕PD,PEPD,PE是角的平分线上一点到是角的平分线上一点到AOBAOB两边的距两边的距离离,这

5、两个距离相等这两个距离相等.折一折折一折角平分线的性质角平分线的性质已知:如图,已知:如图,OC是是AOB的平分线,点的平分线,点P在在OC上,上,PDOA,PEOB,垂足分别是,垂足分别是D,E。求证:求证:PD=PE证明:证明:PDOA,PEOB(已知)(已知)PDO=PEO=90(垂直的定义)(垂直的定义)在在PDO和和PEO中中 PD=PE(全等三角形的对应边相等)(全等三角形的对应边相等)PDO=PEO AOC=BOC OP=OP PDO PEO(AAS)角的平分线上的点到这个角的两边的距离相等。角的平分线上的点到这个角的两边的距离相等。DP PEAOBC角角平分线的性质平分线的性质

6、定理:角的平分线上的点到角的两边的距离相等定理:角的平分线上的点到角的两边的距离相等用用符号语言表示为:符号语言表示为:AOBPED12 1=21=2 PD OA PD OA,PE OBPE OBPD=PEPD=PE(角角的的平分线上的点到角的两边的平分线上的点到角的两边的距离相等距离相等)推理的理由有推理的理由有三个三个,必须写完全,不能必须写完全,不能少了任何一个。少了任何一个。角平分线的性质角平分线的性质角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。BADOPEC定理定理应用所具备的

7、条件:应用所具备的条件:(1 1)角的平分线;)角的平分线;(2 2)点在该平分线上;)点在该平分线上;(3 3)垂直距离。)垂直距离。定理的作用:定理的作用:证明线段相等。证明线段相等。如图,如图,AD平分平分BAC(已知)已知)=,()在角的平分线上的点到这在角的平分线上的点到这个角的两边的距离相等。个角的两边的距离相等。BD CD()如图,如图,DCAC,DBAB (已知)已知)=,()在角的平分线上的点到这在角的平分线上的点到这个角的两边的距离相等。个角的两边的距离相等。BD CD()AD平分平分BAC,DCAC,DBAB (已知)已知)=,()DBDC在角的平分线上的点到这个在角的平

8、分线上的点到这个角的两边的距离相等。角的两边的距离相等。不必再证全等不必再证全等Your site hereLOGO 在在OAB中,中,OE是它的角平分线,且是它的角平分线,且EA=EB,EC、ED分别垂直分别垂直OA,OB,垂足为,垂足为C,D.求证:求证:AC=BD.O OA AB BE EC CD DYour site hereLOGO 在在ABC中,中,C=90 ,AD为为BAC的平分线,的平分线,DEAB,BC7,DE3.求求BD的长。的长。EDCBA,1 1、在、在RtABCRtABC中,中,BDBD是角平分线,是角平分线,DEABDEAB,垂足为垂足为E E,DEDE与与DCDC

9、相等吗?为什么?相等吗?为什么?ABCDE 2 2、如如图图,OC,OC是是AOBAOB的的平平分分线线,点点P P在在OCOC上上,PD,PD OA,PEOB,OA,PEOB,垂垂 足足 分分 别别 是是 D D、E,PD=4cm,E,PD=4cm,则则PE=_cm.PE=_cm.ADOBEPC3.3.如图,如图,DEABDEAB,DFBCDFBC,垂足垂足分别是分别是E E,F F,DE=DFDE=DF,EDB=EDB=6060,则,则 EBF=EBF=度,度,BE=BE=。60BF4 4 如图,在如图,在ABCABC中,中,C=90C=90,DEABDEAB,1=21=2,且,且AC=6

10、cmAC=6cm,那么线段那么线段BEBE是是ABCABC的的 ,AE+DE=AE+DE=。角的平分线角的平分线6cm6cm5.已知已知ABC中中,C=900,AD平分平分 CAB,且且 BC=8,BD=5,求点求点D到到AB的距离是多少?的距离是多少?ABCDEYour site hereLOGO1 如图,在如图,在ABC中,中,C=90 AD是是BAC的平的平分线,分线,DEAB于于E,F在在AC上,上,BD=DF;求证:求证:CF=EBACDEBF2 2已知:如图,已知:如图,ABCABC的角平分线的角平分线BMBM、CNCN相交于点相交于点P.P.求证:点求证:点P P到三边到三边AB

11、AB、BCBC、CACA的距离相等的距离相等.证明:证明:过点过点P作作PD、PE、PF分别分别垂直于垂直于AB、BC、CA,垂足为垂足为D、E、F BM是是ABC的角平分线,点的角平分线,点P在在BM上上 PD=PE(在角平分线上的点到角的两边的距离相等)在角平分线上的点到角的两边的距离相等)同理同理 PE=PF.PD=PE=PF.即点即点P到边到边AB、BC、CA的距离相等的距离相等ABCMNPDEF怎样找三角形内到三角形三边距离相等的点?怎样找三角形内到三角形三边距离相等的点?3 如图,如图,的的的外角的平分线与的外角的平分线与的外角的平分线相交于点的外角的平分线相交于点求证:点到三边,所在直线的求证:点到三边,所在直线的距离相等距离相等F FGHYour site hereLOGO这节课我们学习了哪些知识?这节课我们学习了哪些知识?1、“作已知角的平分线作已知角的平分线”的尺规作图法;的尺规作图法;2、角的平分线的性质:、角的平分线的性质:111角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。OC是是AOB的平分线的平分线,又又 PDOA,PEOB PD=PE (角的平分线上的点角的平分线上的点到角的两边距离相等到角的两边距离相等).EDOABPC几何语言几何语言:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁