《二次型的标准形ppt课件.ppt》由会员分享,可在线阅读,更多相关《二次型的标准形ppt课件.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值设设第二节、二次型的标准形第二节、二次型的标准形对于二次型,我们讨论的主要问题是:寻求对于二次型,我们讨论的主要问题是:寻求可逆的线性变换,将二次型化为标准形可逆的线性变换,将二次型化为标准形.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值的二次型,称为二次型的的二次型,称为二次型的标准形标准形。注意:注意:标准形对应的矩阵是对
2、角矩阵因此,二次型标准形对应的矩阵是对角矩阵因此,二次型化标准型的问题,就是矩阵与对角阵合同的问题化标准型的问题,就是矩阵与对角阵合同的问题.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值证证即即 为对称矩阵为对称矩阵.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值说明说明.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随
3、时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值用正交变换化二次型为标准形的具体步骤用正交变换化二次型为标准形的具体步骤.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解1 1写出对应的二次型矩阵,并求其特征值写出对应的二次型矩阵,并求其特征值例例2 2.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价
4、值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值从而得特征值从而得特征值2 2求特征向量求特征向量.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值3 3将特征向量正交化将特征向量正交化得正交向量组得正交向量组.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值4 4将正交向量组单位化,得正交矩阵将正交向量组单位化,得正交矩阵.上
5、一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值于是所求正交变换为于是所求正交变换为.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解例例3 3.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变
6、化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值拉格朗日配方法的具体步骤拉格朗日配
7、方法的具体步骤用正交变换化二次型为标准形,其特点是用正交变换化二次型为标准形,其特点是保保持几何形状不变持几何形状不变问题问题有没有其它方法,也可以把二次型化有没有其它方法,也可以把二次型化为标准形?为标准形?问题的回答是肯定的。下面介绍一种行之有问题的回答是肯定的。下面介绍一种行之有效的方法效的方法拉格朗日配方法拉格朗日配方法定理定理2.2 2.2 任何一个二次型都可通过非退化线性变任何一个二次型都可通过非退化线性变换化为标准形。换化为标准形。.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金
8、的时间价值1.若二次型含有若二次型含有 的平方项,则先把含有的平方项,则先把含有 的乘积项集中,然后配方,再对其余的变量同的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆线样进行,直到都配成平方项为止,经过可逆线性变换,就得到标准形性变换,就得到标准形;拉格朗日配方法的步骤拉格朗日配方法的步骤2.若二次型中不含有平方项,但是若二次型中不含有平方项,但是 则先作可逆线性变换则先作可逆线性变换化二次型为含有平方项的二次型,然后再按化二次型为含有平方项的二次型,然后再按1中方中方法配方法配方.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变
9、化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解例例4 4含有平方项含有平方项去掉配方后多出来的项去掉配方后多出来的项.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值所用变换矩阵为所用变换矩阵为注意注意:定理定理2.22.2说明任何一个二次型都可通过配说明任何一个二次型都可通过配方法化成标准
10、形方法化成标准形.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解例例5 5由于所给二次型中无平方项,所以由于所给二次型中无平方项,所以.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值再配方,得再配方,得.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值所用变换矩阵为所用变换矩阵为.上一页上一页下一页下一页返返 回回资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值作业作业P152-153 2.(1);3.(1);.