《拉普拉斯变换公式总结.pdf》由会员分享,可在线阅读,更多相关《拉普拉斯变换公式总结.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 拉普拉斯变换、连续时间系统的 S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出 S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。知识要点 1.拉普拉斯变换的定义及定义域(1)定义 单边拉普拉斯变换:正变换0()()()stf tF sf tdte#逆变换 1()()()2jstjF sf tF sdsje 双
2、边拉普拉斯变换:正变换()()stBsf tdteF 逆变换1()()2jstBjf tsdsjeF (2)定义域 若0时,lim()0ttf te则()tf te在0的 全 部 范 围 内 收 敛,积 分0()stf tdte存在,即()f t的拉普拉斯变换存在。0就是()f t的单边拉普拉斯变换的收敛域。0与函数()f t的性质有关。2.拉普拉斯变换的性质(1)线性性 若11()()f tF S,22()()f tF S,1,2为常数时,则11221122()()()()f tf tF sF s (2)原函数微分 若()()f tF s则()()(0)df tsF sfdt 11()0()
3、()(0)nnnn rrnrd f ts F ssfdt 式中()(0)rf是 r 阶导数()rrd f tdt在0时刻的取值。(3)原函数积分 若()()f tF s,则(1)(0)()()tfF sf t dtss式中0(1)(0)()ff t dt(4)延时性%若()()f tF s,则000()()()stf tt u tteF s(5)s 域平移 若()()f tF s,则()()atf t eF sa(6)尺度变换 若()()f tF s,则1()()sf atFaa(a0)(7)初值定理lim()(0)lim()tosf tfsF s(8)终值定理lim()lim()tsf ts
4、F s(9)卷积定理,若11()()f tF s,22()()f tF s,则有1212()()()()f tf tF s F s 12121()()()()2f t f tF sF sj=121()()2jjF p F sp dpj 3.拉普拉斯逆变换(1)部分分式展开法 首先应用海维赛展开定理将()F s展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数()f t。(2)留数法 留数法是将拉普拉斯逆变换的积分运算转化为求被积函数()stF s e在围线中所有极点的留数运算,即(1)11()()()()22jstststjcF sF s e dsF s e dsF s
5、ejj 极点的留数 若ip为一阶级点,则在极点isp处的留数21()()instiiispirsp F s eX?若ip为 k 阶级点,则111()()(1)!ikkstiispkdrspF s ekds 4.系统函数(网络函数)H(s)(1)定义 系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即()()()zsRsH sE s冲激响应()h t与系统函数()H s构成变换对,即()()H sh t系统的频率响应特性()()()()jwsjwH jwH sH jw e式中,()H jw是幅频响应特性,()w是相频响应特性。(2)零极点分布图 1212()()()()()()
6、()()()mnK szszszN sH sD sspspsp 式中,是系数;1z,2z,mz为()H s的零点;1p,2p,np为()H s的极点。在 s 平面上,用“”表示零点,“”表示极点。将()H s的全部零点和极点画在 s 平面上得到的图称为系统的零极点分布图。对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。(3)全通函数)如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于jw轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。全通网络函数的幅频特性是常数。(4)最小相移函数 如果系统函数的全部极点和零点均位于 s 平
7、面的左半平面或jw轴,则称这种函数为最小相移函数。具有这种网络函数的系统为最小相移网络。(5)系统函数()H s的求解方法 由冲激响应()h t求得,即()()H sh t。对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由()()()zsRsH sE s获得。根据 s 域电路模型,求得零状态响应的像函数与激励的像函数之比,即为()H s。5.系统的稳定性、若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。(1)稳定系统的时域判决条件()h t dtM(充要条件)若系统是因果的,则式可改写为0()h t dtM(2)对于因果系统,其稳定性的 s 域判决条件 若系统函数()
8、H s的全部极点落于 s 左半平面,则该系统稳定;若系统函数()H s有极点落于 s 右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;若系统函数()H s没有极点落于 s 右半平面,但在虚轴上有一阶极点,则该系统临界稳定。内容摘要 例题 例题 1:求拉氏变换 例题 2:求拉氏变换,拉氏变换的性质 例题 3:拉氏变换的微分性质 例题 4:系统函数,求解系统的响应 例题 5:用拉氏变换法分析电路 例 4-1 拉氏变换的定义和收敛域 典型信号的拉氏变换 二单边拉氏变换逆变换的求法 部分分式展开法 围线积分法 三拉氏变换的基本性质 四用拉普拉斯变换法分析电路 五系统函数 一.拉普拉斯 系统函数
9、的定义 由零极点的决定系统的时域特性 由零极点的分析系统的稳定性 由零极点的分析系统的频响特性 求下列函数的拉氏变换 1ttutf 分析 拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 sF表示tf单边拉氏变换,以 sFB表示tf双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究0t的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。解答 ssstututLttuLsFe1111112 例 4-2 求三角脉冲函数)(f t如图 4-2(a)所示的象函数 分析*和傅里叶变
10、换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。解答 方法一:按定义式求解 方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解 其他 02t1 21t0 tttfttf112o 22222222110101010210e11e1e2e2e21e1e1dede2de1e1de2dedesssssssstststststststssssssssttttsstttttttfsF?方法二:利用线性叠加和时移性质求解 由于?于是 :方法三:利用微分性质求解 分析
11、 信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。将tf微分两次,所得波形如图 4-2(b)所示。、显然 根据微分性质 22112tuttutttutf 0e102stsFttfLsttuL 2222e11ee211ssssssFotfdtd112t1o tfdtd2212t 1 12222e1212ddstttLttfL 00dd222sffsFsttfL 由图 4-2(b)可以看出 于是 方法四:利用卷积性质求解 tf可看作是图 4-2(c)所示的矩形脉冲tf1自身的卷积 于是,根据卷积性质 而 所以 例 4-3 应用微分性质求
12、图 4-3(a)中 的象函数下面说明应用微分性质应注意的问题,图 4-3(b),2tf tf3是的导数 的波形。图 4-3(a)解答 /,00f 00f 22e1ssFs 22e11sssF tftftf11o11ttf1 sFsFsF11 sssFe111 22e11sssF图4-2(c)tftftf321),(,1tf tftftf321,ot tutf313ot tutf 2232ot tutf31图4-4(b)otttf31)3(otttf2)1(otttf3)1(说明(1)对于单边拉氏变换,21tutftf由于故二者的象函数相同,即 )】因而 这是应用微分性质应特别注意的问题。由图
13、4-3(b)知 ssFsF321 ,因而,但虽然tftfsFsF21212 tfLtfL21,故,由于对于0011ftf 301ssFtfL,故,由于对于2022ftf 122ssFtfL ,一阶导数相同,但和虽然002033232fftftf因此 2d0d0202xxfxxtftt xxfxxtfttd0d0303 sfstFssF301122 sfstFssF101133 301ssFtfL ssF31则 122ssFtfL ssF32则 xxtftd03 sfstFssF101133则 例 4-4 某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。为图中所示的矩形
14、脉冲时,求此时系统的输出-.阶跃响应 则 例 4-5 电路如图 4-5(a)所示?(1)求系统的冲激响应。(2)求系统的起始状态 使系统的零输 入响应等于冲激响应。;时,系统的输出为当输入tuttyttxte11;时,系统的输出为当输入tutyttutxte322tx3当输入。3tyo123ttx31thtytytytyzizszi1tgtythtytytytyzi)1(zi)1(zszi1ttththtytye2)1(21 1211ssHssHtutthtetutytytytythte2zs1zi2tutytytgtezi23e1ee23131zi3tutututgtgtytyttttvC2
15、H1teF14-5(a)0Li ,00CLvi、(3)求系统的起始状态,解答%(1)求系统的冲激响应。系统冲激响应th与系统函数 sH是一对拉氏变换的关系。对 sH求逆变换可求得th,这种方法比在时域求解微分方程简便。利用 s 域模型图 4-5(b)可直写出图 4-5(a)电路的系统函数 冲激响应 (2)求系统的起始状态 为求得系统的零输入响应,应写出系统的微分方程或给出带有初值的 s 域模型。下面我们用 s 域模型求解。图 4-5(a)电路的 s 域模型如图 4-5(b)。!由图 4-5(b)可以写出 上式中第二项只和系统起始状态有关,因此该项是零输入响应的拉氏变换。依题意的要求,该项应和
16、sH相等,从而得 故系统的起始状态 的激励时的完使系统对tu。全响应仍为tu 121112sssCsLRsCsEsVsHo 01Cvs sVos1 sEs 0Li4-5(b)2 tutsHLthte1 1 1200212011120012LC2CLCo零输入响应零状态响应ssivssssEvssssivssEsV 1002LCivs 1000LCiv%说明 通过本例可以看出,改变系统的起始状态可以使系统的完全响应满足某些特定要求。本质上,系统的零输入响应完全由系统的起始状态决定,对一个稳定系统而言,零输入响应是暂态响应中的一部分,因此,改变系统的起始状态只能改变系统的暂态响应,使暂态响应满足某
17、些特定要求,例如,本例要求暂态响应为零。(3)求系统的起始状态 求得完全响应根据式当激励信号1tute 从而求得系统的起始状态 (附录 A 拉普拉斯变换及反变换 1.表 A-1 拉氏变换的基本性质 1 线性定理%齐次性)()(saFtafL 叠加性)()()()(2121sFsFtftfL -2 微分定理、一般形式 11)1()1(1222)()()0()()(0)0()()()0()()(kkkknkknnnndttfdtffssFsdttfdLfsfsFsdttfdLfssFdttdfL)(2 120021221 120021212LC22LC2ossivsssssssivsssssV有等
18、于激励信号完全响应由该式容易看出,要使,otut 02002LCsivs 0010LCiv !初始条件为 0 时)()(sFsdttfdLnnn 3 积分定理 一般形式 nktnnknnnntttdttfsssFdttfLsdttfsdttfssFdttfLsdttfssFdttfL1010220220)(1)()()()()()()()()()(个共个共 初始条件为 0 时 nnnssFdttfL)()(个共 4 延迟定理(或称t域平移定理))()(1)(sFeTtTtfLTs 5 衰减定理(或称s域平移定理))()(asFetfLat 6 终值定理)(lim)(lim0ssFtfst 7
19、初值定理*)(lim)(lim0ssFtfst 8 卷积定理)()()()()()(21021021sFsFdtftfLdftfLtt 2表 A-2 常用函数的拉氏变换和 z 变换表 序号 拉氏变换 E(s)时间函数 e(t)【Z 变换 E(z)1 1(t)1 2 Tse11 0)()(nTnTtt.1zz 3 s1)(1 t 1zz 4 21s t】2)1(zTz 5 31s 22t 32)1(2)1(zzzT 6 11ns!ntn¥)(!)1(lim0aTnnnaezzan 7 as 1 ate aTezz 8 2)(1as atte?2)(aTaTezTze 9)(assa ate1)(
20、1()1(aTaTezzze 10)(bsasab btatee bTaTezzezz 11 22s tsin 1cos2sin2TzzTz 12 22ss tcos 1cos2)cos(2TzzTzz 13 22)(as teatsin aTaTaTeTzezTze22cos2sin 14 22)(asas teatcos aTaTaTeTzezTzez222cos2cos 15 aTsln)/1(1 Tta/azz 3 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(sF是s的有理真分式 01110111)()()(asasa
21、sabsbsbsbsAsBsFnnnnmmmm (mn)式中系数nnaaaa,.,110,mmbbbb,110都是实常数;nm,是正整数。按代数定理可将)(sF展开为部分分式。分以下两种情况讨论。0)(sA无重根 这时,F(s)可展开为 n 个简单的部分分式之和的形式。niiinniisscsscsscsscsscsF12211)((F-1)式中,nsss,21是特征方程 A(s)0 的根。ic为待定常数,称为 F(s)在is处的留数,可按下式计算:)()(limsFsscissii (F-2)或 issisAsBc)()((F-3)式中,)(sA为)(sA对s的一阶导数。根据拉氏变换的性质,
22、从式(F-1)可求得原函数 niiisscLsFLtf111)()(tsniiiec1 (F-4)0)(sA有重根 设0)(sA有 r 重根1s,F(s)可写为 )()()()(11nrrsssssssBsF=nniirrrrrrsscsscsscsscsscssc11111111)()()(式中,1s为 F(s)的 r 重根,1rs,,ns为 F(s)的 n-r 个单根;其中,1rc,,nc仍按式(F-2)或(F-3)计算,rc,1rc,,1c则按下式计算:)()(lim11sFsscrssr)()(lim111sFssdsdcrssr )()(lim!11)()(1sFssdsdjcrjjssjr (F-5)()(lim)!1(11)1()1(11sFssdsdrcrrrss 原函数)(tf为 )()(1sFLtf nniirrrrrrsscsscsscsscsscsscL111111111)()()(tsnriitsrrrriecectctrctrc1122111)!2()!1((F-6)