《三重积分的计算法-球面坐标.ppt》由会员分享,可在线阅读,更多相关《三重积分的计算法-球面坐标.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、7.3.4 利用球面坐标计算三重积分利用球面坐标计算三重积分一、球面坐标一、球面坐标 M(x,y,z)P(x,y,0)xyzr M(r,)xyzo1M(x,y,z)P(x,y,0)xyzr M(r,)xyzo2r=常数,即以原点为心的球面。常数,即以原点为心的球面。=常数,即以原点为顶点、常数,即以原点为顶点、z轴为轴的圆锥面。轴为轴的圆锥面。=常数,即过常数,即过z轴的半平面。轴的半平面。zM(x,y,z)P(x,y,0)xyzr M(r,)xyo3zM(x,y,z)P(x,y,0)xyzr M(r,)xyo球面坐标下的体积元素球面坐标下的体积元素 4 为了把三重积分为了把三重积分中的变量从
2、直角坐标中的变量从直角坐标变换为球面坐标,用变换为球面坐标,用三组坐标平面三组坐标平面r=常常数,数,=常数,常数,=常数把积分区域常数把积分区域 分分成许多小闭区域。成许多小闭区域。考虑由考虑由r,各取得微小增量各取得微小增量dr,d,d 所所成的六面体的体积成的六面体的体积(如图如图)。不计高阶无穷小,。不计高阶无穷小,可把这个六面体看作长方形。可把这个六面体看作长方形。xyzo d rd drrd 5xyzo d rd rd 经线方向的长为经线方向的长为 rd,这就是球面坐标系中的体积元素这就是球面坐标系中的体积元素。纬线方向的宽为纬线方向的宽为 rsin d,于是,小六面体的体积为于是
3、,小六面体的体积为dr向径方向的高为向径方向的高为 dr。6二、二、三重积分的球面坐标形式三重积分的球面坐标形式 计算三重积分,一般是化为先计算三重积分,一般是化为先r,再,再,最后,最后 的的三次积分三次积分。7例如,半径为例如,半径为R的球体的体积的球体的体积8xyzo 9xyz1o 10 xyzo211xyzo212xyzo213小结三重积分的计算方法:小结三重积分的计算方法:基本方法基本方法:化三重积分为三次积分计算。化三重积分为三次积分计算。关键步骤:关键步骤:(1)坐标系的选取坐标系的选取(2)积分顺序的选定(直角)积分顺序的选定(直角)(3)定出积分限定出积分限 14柱形体域柱形体域锥形体域锥形体域抛物体域抛物体域柱面坐标柱面坐标长方体长方体四面体四面体任意形体任意形体球面坐标球面坐标球形体域球形体域或其中一或其中一部分部分直角坐标直角坐标坐标系坐标系适用范围适用范围体积元素体积元素变量代换变量代换15