正弦定理课件:(比赛用)PPT).ppt

上传人:wuy****n92 文档编号:80418127 上传时间:2023-03-23 格式:PPT 页数:21 大小:1,015KB
返回 下载 相关 举报
正弦定理课件:(比赛用)PPT).ppt_第1页
第1页 / 共21页
正弦定理课件:(比赛用)PPT).ppt_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《正弦定理课件:(比赛用)PPT).ppt》由会员分享,可在线阅读,更多相关《正弦定理课件:(比赛用)PPT).ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一、创设情境一、创设情境1、问题的给出:、问题的给出:2、实际问题转化为数学问题:、实际问题转化为数学问题:如图,要测量小河两岸如图,要测量小河两岸A,B两个码头的距离。可在小河两个码头的距离。可在小河一侧如在一侧如在B所在一侧,选择所在一侧,选择C,为了算出,为了算出AB的长,可先测出的长,可先测出BC的长的长a,再用经纬仪分别测出,再用经纬仪分别测出B,C的值,那么,根据的值,那么,根据a,B,C的值,能否算出的值,能否算出AB的长。的长。A.B.CaA.B.Ca已知三角形的两个角和一条边,求另一条边。已知三角形的两个角和一条边,求另一条边。ACBcba想一想想一想?问题问题(2 2)上述

2、结论是否可推广到任意三角形)上述结论是否可推广到任意三角形?若成立,如何证明?若成立,如何证明?(1 1)你有何结论)你有何结论?二、定理的猜想二、定理的猜想 asinAbsinBcsinC2R.=2RbsinBBABCbO三、定理的证明三、定理的证明平面几何法平面几何法(1 1)文字叙述文字叙述正弦定理:正弦定理:在一个三角形中,各边和它所对角在一个三角形中,各边和它所对角 的正弦的比相等的正弦的比相等.(2)结构特点结构特点(3 3)方程的观点)方程的观点正弦定理实际上是已知其中三个正弦定理实际上是已知其中三个,求另一个求另一个.能否运用向量的方法来证明正弦定理呢能否运用向量的方法来证明正

3、弦定理呢?和谐美、对称美和谐美、对称美.正弦定理正弦定理:在锐角三角形中在锐角三角形中由向量加法的三角形法则由向量加法的三角形法则BAC在钝角三角形中在钝角三角形中ABC具体证明过程具体证明过程马上完成马上完成!如图:若测得如图:若测得a48.1m,B43 ,C69,求,求AB。解:解:A180(43 69)68 a ABsinA sinC=A.B.Ca在在 ABC中,由正弦定理得:中,由正弦定理得:asinCsinAAB=48.1 sin69sin68=48.4(m)学以致用学以致用You try解:解:正弦定理应用一:正弦定理应用一:已知两角和任意一边,求其余两边和一角已知两角和任意一边,

4、求其余两边和一角例例在在ABC中,已知中,已知a2,b ,A45,求求B和和c。变式变式1:在在ABC中,已知中,已知a4,b ,A45,求求B和和c。变式变式2:在在ABC中,已知中,已知a ,b ,A45,求求B和和c。正弦定理应用二:正弦定理应用二:已知两边和其中一边对角,求另一边的对角,进已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角而可求其它的边和角。(要注意可能有两解)。(要注意可能有两解)点拨:点拨:已知两角和任意一边,求其余两边和一角已知两角和任意一边,求其余两边和一角,此时的解是唯一的此时的解是唯一的.点拨点拨:已知两边和其中一边的对角解三角形已知两边和其中一边

5、的对角解三角形时时,通常要用到通常要用到三角形内角定理和定理或大边三角形内角定理和定理或大边对大角定理对大角定理等三角形有关性质等三角形有关性质.练习练习2、在、在 ABC中,若中,若 a=2bsinA,则,则B()A、B、C、D、或或或或练习练习1、在、在 ABC中,若中,若A:B:C=1:2:3,则,则 a:b:c()A、1:2:3 B、3:2:1 C、1:2 D、2:1自我提高!自我提高!A、等腰三角形、等腰三角形 B、直角三角形、直角三角形 C、等腰直角三角形、等腰直角三角形 D、不能确定、不能确定CCB二种二种 平面几何法平面几何法 向量法向量法定理定理应用应用方法方法 课时小结课时小结二个二个 已知两角和一边已知两角和一边(只有一解)(只有一解)已知两边和其中一边的对角已知两边和其中一边的对角 (有一解,两解,无解)(有一解,两解,无解)一个一个 正弦定理正弦定理CcBbAasinsinsin=P144 习题5.9 1,2,4思考题思考题:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁