《1.1.1正弦定理比赛获奖课件优秀PPT.ppt》由会员分享,可在线阅读,更多相关《1.1.1正弦定理比赛获奖课件优秀PPT.ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 1.问题的引入问题的引入:.(1)在我国古代就有嫦娥奔月的神话故事在我国古代就有嫦娥奔月的神话故事.明月明月 高悬高悬,我们仰视夜空我们仰视夜空,会有无限遐想会有无限遐想,不禁会问不禁会问,月亮离我们地球有多远呢月亮离我们地球有多远呢?科学家们是怎样科学家们是怎样 测出来的呢?测出来的呢?实际问题实际问题:BCA已知 BC 长和ABC、ACB的值,如何求AB长?我们这一节所学习的内容就是解决这些问题我们这一节所学习的内容就是解决这些问题的有力工具的有力工具.ABC3C2C1CBC的长度与角A的大小有关吗?三角形中角A与它的对边BC的长度是否存在定量关系?回忆一下直角三角形的边角关系回忆一下直
2、角三角形的边角关系?ABCcba两等式间有联系吗?两等式间有联系吗?思索思索:对一般的三角形对一般的三角形,这个结论还能成立吗这个结论还能成立吗?2.定理的推导定理的推导1.1.1 正弦定理正弦定理(1)当当 是锐角三角形时是锐角三角形时,结论是否还成立呢结论是否还成立呢?D如图如图:作作AB上的高是上的高是CD,根椐根椐三角形的定义三角形的定义,得到得到1.1.1 正弦定理正弦定理BACabcE在锐角三角形中在锐角三角形中由向量加法的三角形法则由向量加法的三角形法则BAC(2)当当 是钝角三角形时是钝角三角形时,以上等式是否照旧成立以上等式是否照旧成立?BACbca1.1.1 正弦定理正弦定
3、理D且仿上可得此时也有交BC延长线于D,过点A作ADBC,正弦定理正弦定理 在一个三角形中,各边和它所在一个三角形中,各边和它所 对角的正弦的比相等,即对角的正弦的比相等,即含三角形的三边及三内角含三角形的三边及三内角,由己知二角一边由己知二角一边或二边一角可表示其它的边和角或二边一角可表示其它的边和角.定理结构特征定理结构特征:1.1.1 正弦定理正弦定理剖析定理、加深理解1 1、A+B+C=A+B+C=2 2、大角对大边,大边对大角、大角对大边,大边对大角剖析定理、加深理解3 3、正弦定理可以解决三角形中的问题:、正弦定理可以解决三角形中的问题:已知已知两角和一边两角和一边,求其他角和边,
4、求其他角和边 已知已知两边和其中一边的对角两边和其中一边的对角,求另一边,求另一边的对角,进而可求其他的边和角的对角,进而可求其他的边和角剖析定理、加深理解4 4、一般地,把三角形的三个角、一般地,把三角形的三个角A A,B B,C C和它们的对边和它们的对边a a,b b,c c叫做叫做三角形的元三角形的元素素。已知三角形的几个元素求其他元素。已知三角形的几个元素求其他元素的过程叫的过程叫解三角形解三角形剖析定理、加深理解5 5、正弦定理的变形形式、正弦定理的变形形式.6 6、正弦定理,可以用来推断三角形的、正弦定理,可以用来推断三角形的形态,其主要功能是实现三角形边角关形态,其主要功能是实
5、现三角形边角关系的转化系的转化.例例1 在在 已知已知 ,解三角形解三角形.通过例题你发觉了什么一般性结论吗通过例题你发觉了什么一般性结论吗?小结小结:知道三角形的两个内角和任何一边,利:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。用正弦定理可以求出三角形中的其它元素。1.1.1 正弦定理正弦定理3.定理的应用举例定理的应用举例变式:变式:若将若将a=2 改为改为c=2,结果如何?,结果如何?例 2、已知a=16,b=,A=30.解三角形.已知两边和其中一边已知两边和其中一边的对角的对角,求其他边和角求其他边和角解:由正弦定理得所以60,或120当 时60C=90
6、C=30当120时B16300ABC1631683变式:a=30,b=26,A=30,解三角形300ABC2630解:由正弦定理得所以25.70,或180025.70=154.30由于154.30+3001800故B只有一解(如图)C=124.30,小结小结:已知两边和其中一边的对角,可以求出已知两边和其中一边的对角,可以求出三角形的其他的边和角。三角形的其他的边和角。4.基础练习题基础练习题1.1.1 正弦定理正弦定理B=300无解无解BCA?5.探究课题引入时问题探究课题引入时问题(2)的解决方法的解决方法.1.1.1 正弦定理正弦定理正弦定理正弦定理主要应用主要应用 (1)已知两角及随意一边,可以求出其他两边和另一角;已知两角及随意一边,可以求出其他两边和另一角;(2)已知两边和其中一边的对角,可以求出三角形的其他的边已知两边和其中一边的对角,可以求出三角形的其他的边和角。和角。(此时可能有一解、二解、无解)此时可能有一解、二解、无解)1.1.1 正弦定理正弦定理小结小结:课后探究课后探究:那么这个那么这个k值是什么呢值是什么呢?你能用一个和三角形有你能用一个和三角形有关的量来表示吗关的量来表示吗?作业:作业:P10 2 (1)你还可以用其它方法证明)你还可以用其它方法证明正弦定理吗?正弦定理吗?(2)