等差数列的前n项和性质.pptx

上传人:莉*** 文档编号:80078466 上传时间:2023-03-22 格式:PPTX 页数:23 大小:900.75KB
返回 下载 相关 举报
等差数列的前n项和性质.pptx_第1页
第1页 / 共23页
等差数列的前n项和性质.pptx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《等差数列的前n项和性质.pptx》由会员分享,可在线阅读,更多相关《等差数列的前n项和性质.pptx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【思考】第1页/共23页 等差数列前等差数列前n n项和的有关计算项和的有关计算 1.1.等差数列前等差数列前n n项和的应用项和的应用(1 1)等差数列前)等差数列前n n项和公式,共涉及到五个量项和公式,共涉及到五个量a a1 1、n n、d d、a an n、S Sn n.若已知其中三个量,可求另外两个量,也就是我们说的若已知其中三个量,可求另外两个量,也就是我们说的“知知三求二三求二”,其方法一般是通过通项公式和前,其方法一般是通过通项公式和前n n项和公式联立方程项和公式联立方程(组)求解(组)求解.(2 2)在利用等差数列前)在利用等差数列前n n项和公式解题时,常常要联系该公式项

2、和公式解题时,常常要联系该公式的变形形式:的变形形式:S Sn n=或或S Sn n=An=An2 2+Bn.+Bn.【名师指津】第2页/共23页2.2.依据等差数列的性质得到的结论依据等差数列的性质得到的结论.(1 1)当)当n n为奇数时,为奇数时,S Sn n=(2 2)=a=a1 1+(n-1n-1)【特别提醒特别提醒】注意应用等差数列性质来简化计算过程,同时在解注意应用等差数列性质来简化计算过程,同时在解题过程中还应注意已知与未知的联系及整体思想的运用题过程中还应注意已知与未知的联系及整体思想的运用.第3页/共23页【例例1 1】已知等差数列已知等差数列aan n.(1)a(1)a1

3、 1=a=a1515=S=Sn n=-5,=-5,求求n n和和d;(2)ad;(2)a1 1=4,S=4,S8 8=172,=172,求求a a8 8和和d.d.【审题指导审题指导】根据等差数列前根据等差数列前n n项和公式解方程项和公式解方程.【规范解答规范解答】(1 1)a a1515=+(15-1)d=+(15-1)d=d=d=又又S Sn n=na=na1 1+d=-5,d=-5,解得解得n=15,n=-4n=15,n=-4(舍)(舍).(2 2)由已知,得)由已知,得S S8 8=解得解得a a8 8=39,=39,又又a a8 8=4+(8-1)d=39,d=5.=4+(8-1)

4、d=39,d=5.第4页/共23页 等差数列前等差数列前n n项和的性质项和的性质等差数列前等差数列前n n项和的性质项和的性质.(1)(1)项数(下标)的项数(下标)的“等和等和”性质:性质:(2)(2)项的个数的项的个数的“奇偶奇偶”性质:性质:等差数列等差数列aan n 中,公差为中,公差为d d:若共有若共有2n2n项,则项,则S S2n2n=n=n(a an n+a+an+1n+1););S S偶偶-S-S奇奇=nd=nd;S S偶偶S S奇奇=a=an+1n+1aan n;第6页/共23页若共有若共有2n+12n+1项,则项,则S S2n+12n+1=(2n+12n+1)a an+

5、1n+1;S S偶偶-S-S奇奇=-a=-an+1n+1;S S偶偶S S奇奇=n=n(n+1n+1););“片段和片段和”性质:性质:等差数列等差数列aan n 中,公差为中,公差为d d,前,前k k项的和为项的和为S Sk k,则,则S Sk k,S S2k2k-S-Sk k,S S3k3k-S-S2k2k,S Smkmk-S-S(m-1m-1)k k,构成公差为构成公差为k k2 2d d的等差数列的等差数列.第7页/共23页【例例2 2】S Sn n是等差数列是等差数列aan n 的前的前n n项和,且项和,且S S1010=100=100,S S100100=10=10,求求S S

6、110110.【规范解答规范解答】方法一方法一:设等差数列设等差数列aan n 的公差为的公差为d,d,前前n n项和项和为为S Sn n,则则S Sn n=na=na1 1+由已知得由已知得10-,10-,整理得整理得d=d=代入代入,得得a a1 1=SS110110=110a=110a1 1+=-110.+=-110.故此数列的前故此数列的前110110项之和为项之和为-110.-110.第8页/共23页方法二方法二:数列数列S S1010,S,S2020-S-S1010,S,S3030-S-S2020,S,S100100-S-S9090,S,S110110-S-S100100成等差成等

7、差数列数列,设其公差为设其公差为D,D,前前1010项和为项和为10S10S1010+D=SD=S100100=10=10 D=-22,SD=-22,S110110-S-S100100=S=S1010+(11-1)D+(11-1)D=100+10(-22)=-120.=100+10(-22)=-120.SS110110=-120+S=-120+S100100=-110.=-110.第9页/共23页【例例】已知等差数列已知等差数列aan n 的前的前4 4项和为项和为2525,后,后4 4项和为项和为6363,前前n n项和为项和为286286,求项数,求项数n.n.【审题指导审题指导】题目给出

8、前题目给出前4 4项和与后项和与后4 4项和,可利用等差数项和,可利用等差数列项数(下标)的列项数(下标)的“等和等和”性质:性质:S Sn n=来求得来求得.【规范解答规范解答】因为因为a a1 1+a+a2 2+a+a3 3+a+a4 4=25=25,a an-3n-3+a+an-2n-2+a+an-1n-1+a+an n=63.=63.而而a a1 1+a+an n=a=a2 2+a+an-1n-1=a=a3 3+a+an-2n-2=a=a4 4+a+an-3n-3,所以,所以4 4(a a1 1+a+an n)=88=88,所以,所以a a1 1+a+an n=22=22,所以所以S

9、Sn n=11n=286=11n=286,所以,所以n=26.n=26.故所求的项数为故所求的项数为26.26.第11页/共23页【典例典例】(1212分)在等差数列分)在等差数列aan n 中,中,a a1 1=25=25,S S1717=S=S9 9,求,求S Sn n的最大值的最大值.【审题指导审题指导】题目给出首项和题目给出首项和S S1717=S=S9 9等条件,欲求等条件,欲求S Sn n的最大的最大值可转化为二次函数求最值,或利用通项公式值可转化为二次函数求最值,或利用通项公式a an n求求n n使得使得a an n0,a0,an+1n+10 0或利用性质求出大于或等于零的项或

10、利用性质求出大于或等于零的项.第13页/共23页【规范解答规范解答】方法一:设公差为方法一:设公差为d,d,由由S S1717=S=S9 9得得2517+=25 2517+=25 3 3分分解得解得d=-2d=-2,6 6分分S Sn n=25n+=25n+(-2-2)=-=-(n-13n-13)2 2+169+169,9 9分分由二次函数性质得,当由二次函数性质得,当n=13n=13时,时,S Sn n有最大值有最大值169.169.1212分分第14页/共23页方法二:先求出公差方法二:先求出公差d=-2d=-2(同方法一),(同方法一),6 6分分a a1 1=25=250,0,故故aa

11、n n 为递减数列,由为递减数列,由 得得 解得解得 9 9分分即即 又又nNnN*当当n=13n=13时,时,S Sn n有最大值有最大值S S1313=1325+=1325+(-2-2)=169.=169.1212分分第15页/共23页方法三:先求出公差方法三:先求出公差d=-2d=-2(同方法一),(同方法一),6 6分分由由S S1717=S=S9 9,得,得a a1010+a+a1111+a+a1717=0=0,而而a a1010+a+a1717=a=a1111+a+a1616=a=a1212+a+a1515=a=a1313+a+a1414,故故a a1313+a+a1414=0 =

12、0 9 9分分d=-2d=-20,a0,a1 10,a0,a13130,a0,a14140.0.故故n=13n=13时,时,S Sn n有最大值有最大值169.169.1212分分第16页/共23页【误区警示误区警示】对解答本题时易犯错误的具体分析如下:对解答本题时易犯错误的具体分析如下:第17页/共23页1.1.在等差数列在等差数列aan n 中,已知中,已知a a1 1=4=4,a a6 6=6=6,则前,则前6 6项和项和S S6 6=()(A A)70 70 ()()35 35 ()()30 30 ()()1212【解析解析】选选S S6 6 30302.2.等差数列等差数列aan n

13、 的前项和为的前项和为S Sn n,若,若a a3 3a a17171010,则,则S S1919()()()55 55 ()()95 95 ()()100 100 ()不能确定()不能确定【解析解析】选选S S1919 9595第20页/共23页3.3.已知数列已知数列aan n 的通项的通项a an n-n n,则其前项和,则其前项和S Sn n_【解析解析】a an+1n+1-a-an n-,aan n 是等差数列是等差数列a a1 1-,-,S Sn n-(-)答案:答案:4.4.等差数列等差数列aan n 的前项和为的前项和为S Sn n,若,若a a2 2,a a3 3,则,则S

14、S4 4_【解析解析】aa2 2=1=1,a a3 3,a a1 1-,S S4 4答案:答案:第21页/共23页5 5.已知已知aan n 是等差数列,是等差数列,a a1 1a a3 3a a5 5,a a6 6,求此数,求此数列前项的和列前项的和【解析解析】设公差为设公差为d,d,aa1 1a a3 3a a5 59 9,a a6 6,3a3a3 3=9,a=9,a3 3=3=3,a a6 6=a=a3 3+(6-3)d+(6-3)d,d=2,d=2,解得解得a a1 1=a=a6 6-5d=-1.-5d=-1.SS6 6=6(-1)+30=24.=6(-1)+30=24.第22页/共23页感谢您的观看!第23页/共23页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁