《带式输送机张紧装置油缸.pdf》由会员分享,可在线阅读,更多相关《带式输送机张紧装置油缸.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、带式输送机张紧装置油缸 1/16 带式输送机的张紧装置油缸 拉紧装置是带式输送机不可缺少的重要组成部分,它直接关系到带 式输送机的安全运行及使用寿命,对于大运量、长距离等大型带式输送 机的正常运行而言,更显示出了其非常重要的作用。本文对拉紧装置进 行相关分析,对目前各种带式输送机的拉紧系统特点加以研究。在此基 础上,提出了新型输送带液压拉紧系统的方案,进一步建立了相应的数 学模型,并根据实际现场参数做了系统仿真分析。针对液压伺服系统的 非线性和时变性,把模糊控制和传统PID 控制两种控制方式结合起来,设计出了模糊 PID 控制器,应用在本文所设计的液压拉紧伺服控制系统 中,并对加入模糊 PID
2、 控制的系统进行了仿真分析。由仿真结果可以看 出,输送机液压伺服拉紧系统响应快、工作稳定,克服了以往传统拉紧 系统的弊病,使张力得到良好的控制,延长了皮带的使用寿命,提高了 工作效率。关键词:带式输送机;拉紧装置;液压伺服系统;数学模型;模糊 PID 控制;系统仿真 3 带式输送机液压拉紧系统的设计 综合分析各种拉紧装置工作方式的优缺点,目前的研究多趋向于在满足 输送机胶带不打滑和保证胶带在托辊间的垂度要求的前提下,尽量减小输送 机系统正常平稳运行时的张紧力,减少或消除张紧力过大对带式输送机相关 设备的损害,降低由于外载冲击而引起的胶带纵向震荡,增强系统运行稳定 性等等。为实现这些目的,更多的
3、采用自动检测,实时修正等手段,力求整 个拉紧装置工作效能的最优化。在此基础上本章设计了以电液伺服阀控制液 压缸的液压伺服拉紧系统,以实现对带式输送机所需的恒张力的控制。建立 了液压拉紧系统的数学模型,并对系统进行了仿真分析。3.1 3.1.1 带式输送机液压伺服拉紧系统总体设计 液压拉紧装置的组成及工作原理(1)拉紧装置的组成 液压伺服拉紧装置由液压泵站、拉紧油缸、压力继电器、电液伺服阀、力传感器、伺服放大器、电控箱控制系统及附件等组成。其液压拉紧站系统 如图 3-1 所示。(2)系统的工作原理 带式输送机在启动时和稳定运行时对皮带的张力要求是不同的,启动时 所需要的张力大约是稳定运行时所需要
4、的张力的 1.5 倍。这就需要液压系统 能在两级工作压力下工作,一个是启动压力,另一个是稳定运行时压力,前 者约为后者的 1.5 倍。如图 3-1 所示,本方案在拉紧油缸的进油管道并联接 入电液伺服阀控制油路来实现胶带机稳定运行时拉紧力的实时调控。胶带机 启动前,拉紧油缸的油液压力由溢流阀 17 控制,启动前液压拉紧站系统的状 态是:手动换向阀 5 处于右位,开关阀 6 开通,电液伺服阀 15 处于关闭状态。胶带机启动前,先启动拉紧装置,拉紧油缸的油液压力达到胶带机启动压力 时,压力继电器 7 发出电信号,胶带机启动。当胶带运行速度达到工作速度 带式输送机张紧装置油缸 2/16 时,由速度检测
5、装置发出电信号,电磁开关阀 5 关闭截流,拉紧系统切换到 电液伺服阀 15 控制状态,实时调控拉紧油缸的油液压力。1.粗过泌器 2.油泵 3.电动机 4.精过滤器 5.手动换向阀 6.开关阀 7.压力继电器 8.压力表9.油缸10.拉力传感器 11.动滑轮 12.改向滑轮 13.拉紧小车 14.慢速绞车15.电液伺服阀 16.蓄能器 17.滋流闷 18.油箱 系统要求启动迅速,即液压缸要迅速拉紧原来松弛的皮带以及胶带机启 动时其下分支胶带产生的弹性伸长,这就使得液压缸需要很大的流量.稳定 运行时,张紧的皮带使得液压缸活塞杆移动范围很小,这时液压缸需要的流 t 下降。为解决这个问题,加了一个蓄能
6、器用以补油,既能及时补油,又能 在正常稳定工作时保持恒定压力。本方案设计的液压拉紧装置采用三通伺服阀控制液压缸有杆腔油液的压 力和流量,从而实现对液压缸输出力的实时控制。该电液力伺服控制系统原理图如图 3-2 所示 图 3-2 电液力伺服控制系统原理图 带式输送机张紧装置油缸 3/16 将带式输送机平稳运行时理论拉紧力值转化为相应的压力指令电压信号 ur,作为电液力伺服控制系统的输入,与由力传感器检测转化的反馈电压信 号 of 相比较得出偏差电压信号,此偏差信号经伺服放大器放大后输入到伺服 阀,控制伺服阀滑阀的开口大小,从而控制拉紧油缸的油液压力,使液压缸 拉力向减小误差的方向变化,直至液压缸
7、拉力等于指令信号所规定的值为止。这样就形成了伺服阀压力控制回路。液压缸的拉力与指令信号 u,一一对应。3.1.2 液压伺服拉紧装里的特点 (1)可自动调节张紧力 本文设计的液压张紧装置可以根据带式输送机的工况及对输送带张力的 不同要求,任意调节输送机启动时的张紧力。待系统运行平稳后,将按预定 程序自动工作,保证输送带在理想状态下工作。克服了其他类型拉紧装置拉 紧力过大或过小、难以控制的弊病,在正常运行状态时能时实调控,使带式 输送机在稳定运行时处于较低的张力状态。在带式输送机基本参数不变的情 况下,与其他张紧方式相比,可以减小输送机的功率,降低输送带等级,进 而减少设备的投资和维修费用。(2)
8、响应快 带式输送机启动时,输送带的松边会突然松弛伸长,此时张紧液压缸在 蓄能器的作用下,能立刻收缩活塞杆补偿输送带的伸长量,减少输送带松边 对紧边的冲击,不但使输送机起动平稳、可靠,而且较好地保护了输送带,减少断带事故的发生。正常运行时通过电液伺服系统的在线检测、实时调控,使张紧力始终维持在理论值左右,减少输送带动张力的波动,大大提高了整 辽宁工程技术大学硕士学位论文 机的动态稳定性。(3)控制方便 该张紧装置的控制系统可以与输送机的集控装置连接,实现远程控制。3.2 液压拉紧系统模型的建立 在电液伺服力控制的系统中,电液伺服阀和阀控液压缸的动态特性决定 了整个系统的动态性能。电液伺服阀与液压
9、缸是互相配合而作用的,所以在 建立系统的线性模型之前,先对电液伺服阀和阀控液压缸进行特性方程的分 析231。3.2.1 三通阀控制液压缸基本方程 阀控液压缸的动态特性取决于阀和液压缸的特性并和负载有关。分析时 按集中参数考虑,假定负载是质量、弹簧构成的单自由度系统。由于描述动 力元件的一些微分方程是非线性的,为了分析简便和便于应用,采用线性化 分析方法,即研究在某一稳定工作点附近作微小运动时的特性.当工作点变 动时必须谨慎地对所有工作点进行研究。但实际上动力元件的参数可在较宽 的范围内用于不同的工作点,所以线性化的分析结果还是相当实用的【201.为了推导液压动力元件的传递函数,首先要列出基本方
10、程,即液压控制 阀的流量方程、液压缸流量连续性方程和液压缸与负载的力平衡方程25-29.阀控单出杆液压缸的模型如图 3-3 所示。1)滑阀的流量方程 伺服阀的静态特性方程是一个非线性方程,作系统分析时较为困难,通 常将它线性化处理,并以增量形式表示。推导之前做了滑阀的线性化流量方程的一些假设。假定:带式输送机张紧装置油缸 4/16(1)双边滑阀两个节流窗口是匹配和对称的,流量系数相等;(2)由于阀腔的容积很小,不考虑液体在阀腔里的压缩性;(3)阀具有理想的响应能力,即阀芯位移和负载变化立即引起流量的相 应变化:(4)供油压力 Ps 恒定不变,回油压力 P0 为零.(5)忽略管道和阀腔内的压力损
11、失。图 3-3 三通阀控制不对称缸的原理图 根据上述假设,滑阀的线性化流量方程可以用增量形式表示为 式中 xv-一一阀心的位移量,与输入电流成正比。下面定义伺服阀的三个阀系数为:a.流 t 增益系数(流量放大系数)Kq b.流盆压力系数 Kc 它是压力一流量特性曲线的斜率并冠以负号,使其为正值。带式输送机张紧装置油缸 5/16 c.压力增益 Kp 它是压力特性曲线的斜率。由上可知三个阀系数之间的关系为 根据阀系数的定义,滑阀的线性化流量方程式(3-1),可以表示为 由于伺服阀通常工作在零位附近,工作点在零位,其参数的增量也就是 它的绝对值,因此阀的线性化流量方程式(3-5)也可以写成下式:2)
12、液压缸流量连续性方程 为了便于分析与计算进行了一些假设,假定:(1)所有连接管道都短而粗,可以忽略管道内的摩擦损失和管路动态的 影响:(2)在管道和液压缸每个工作腔内不会出现饱和和气穴现象,且各处压 力相同;(3)油液温度和体积弹性模量均为常数;(4)液压缸的内外泄漏为层流流动,且液压缸两腔的外泄漏相等;(5)活塞在液压缸两工作腔容积相等处做微小运动。根据流量的连续性,可写出流入液压缸控制腔的流量 q:为 式中液压缸进油腔的活塞有效面积 活塞位移 液压缸总泄漏系数(Ctp=Cip+Cep)有效体积弹性模量(包括油液、连接管道和缸体的机械柔度)液压缸进油腔的容量(包含阀、连接管道和进油腔)3)液
13、压缸输出力增量方程 液压动力元件的动态特性受负载特性的影响,负载力一般包括惯性力、带式输送机张紧装置油缸 6/16 粘性阻尼力、弹性力和任意外负载力。辽宁工程技术大学硕士学位论文 液 压 缸 拉 紧 装 置 原 理 及 动 力 模 型 如 图3-4所 示。图 3-4 液压缸拉紧装置动力模型 图 3-4 所示动力模型的动力方程为:整个输送机系统的动力方程写成矩阵形式为:由于液压拉紧装置工作是瞬时的,油缸活塞杆的位移为XP 时,胶带上 各质量点的位移很小,胶带上的惯性力、粘性阻尼力、弹性力可疑忽略不计。拉紧小车、动滑轮、钢丝绳的质量集中到活塞杆上,总质量记为 Mt。拉紧小 车与轨道接触有摩擦阻力
14、Fz 作用,大小为 m/2 扩有方向性。液压缸的输出力增量方程为 带式输送机张紧装置油缸 7/16 式中 mt活塞及负载折算到活塞上的总质量 Bp活塞及负载的粘性阻尼系数 K负载弹簧刚度 Fs油缸的输出力 Fz 一一拉紧小车摩擦阻力 3.2.2 系统数学模型的建立 (1)输入偏差 式中:Ur 一一系统设定电压值 Uf 一一力传感器测定值 (2)力传感器模型 力传感器的响应频率远大于系统的响应频率,故将力传感器简化为比例 环节:式中:Kl 一一力传感器总反馈增益 (3)伺服放大器的模型 伺服放大器的固有频率大于液压缸的固有频率,故放大器简化为比例环 节,其输出电流为 式中 Ka伺服放大器增益 U
15、e 一一输入电压信号 (4)电液伺服阀模型 电液伺服阀的传递函数采用什么形式,取决于动力元件的液压固有频率 的大小。当伺服阀的频宽与液压固有频率相近时,伺服阀可近似看成二阶振 荡环节 带式输送机张紧装置油缸 8/16 当伺服阀的频宽大于液压固有频率 3-5 倍时,可近似看成惯性环节 当伺服阀的频宽大于液压固有频率 5-10 倍时,可以将其看成比例环节 3.2.3 系统方块图 综合上述各式得出力伺服系统的总方块图如图 3-5 所示。推导力伺服数 学模型的方法是根据系统工作的物理过程,从系统的原始输入开始,顺着信 号的传输过程,直到负载输出为止建立整个系统的数学模型,其中一个部件 模型的输入是以其
16、上一个部件模型的输出为基础的。带式输送机张紧装置油缸 9/16 3.2.4 系统的传递函数简化 对式(3-22)进行简化。通常,则式(3-21)传递函数可以简化为 力控系统方块图 负载的阻尼系数 B,很小,可以忽略不计。Fg(S)xv(s)K9A-rmt S z+;、Ka戈 K)A?m,_,m._,(A?A!_、_ 一 J+一 J+I 一+竺甲冬.+1 I-+I 凡 KKh K 戈 KceKh KceK)(3-23)其中 _flA 2.AD Ah=一二一二.二。.”二”二。.tJ 一斗)v,式(3-23)可近似写成 Kq 刀(s2.,、,、n 一-:尸,.11 Fg tS)Kc,l 叫少 xv
17、(s)一s.,1(s2.20。.,、”la-l-J)I宁 1 Iles,r 十O 宁 I I w r)l 叫,。).钾卜 辽宁工程技术大学硕士学位论文 式中 wm“载的固“”率,。,_ _FKwm-m,口,液压弹簧与负载弹簧串联偶合的刚度与阻尼系数之比 K-了 I 1、w_=一争/I+,I 形戈 Kh K 夕 口。液压弹簧与负载弹簧并联偶合的刚度与负载质量形成的固有频 带式输送机张紧装置油缸 10/16。一*F1+Kh 一、1+KK=KFhm,o阻尼比,4-fl,K,two V,R+(K/Kh)其中 KlKh 一一总压力增益 因此方块图可以简化如图 3-6 所示 U,+UeKa 兰 K,G-,
18、(S 铸 Fg K,I 图 3-6 简化的力控系统方块图 得到系统简化开环传递函数:G(S)H(S)二、。,(sS2KOG,v(SJI=22+,)l W)厂 S.丫 S 2 2-_、一+1 II z+一 J+11、口_八(W CD-I、,/、Uu/”“”.”“”“二(3-26)式中 Ko系统的开环增益 K-K。一a Ksv 首 APKI(3-27)辽宁工程技术大学硕士学位论文 3.3 系统模型仿真分析 系统仿真是近年来发展起来的一门综合性很强的新兴学科,它涉及到系 统分析、控制理论、计算方法和计算机等技术。目前,计算机仿真己成为系 统分析、研究、设计和人员训练不可缺少的手段,它给工程界及企业界
19、带来 了巨大的社会效益和经济效益。应用它能够方便、安全、节省的研究一般系 统,而且对于不可能进行直接实践和重复的社会、经济和军事系统,计算机 仿真更显示出其无比的优越性。液压仿真作为系统仿真的一个分支,为液压 系统的设计、优化与控制,特别是动态工作性能的提高,提供了一个有力的 技术手段,己成为现代化液压系统设计体系中一个非常重要的环节。液压仿 真研究既可以是实质上的修正与改进,其目的在于找出一个现有系统不能令 人满意工作的症结所在,并给出改进系统现状的解决措施与方案;也可以是实 质上的综合,即在设计阶段对相应的参数进行的检验,以保证制造出的系统 具有良好的动态性能。因此,液压仿真具有很广泛的实
20、用价值,随着系统仿 真技术的发展,将愈加受到人们的重视。设计的控制系统是否合理,就要验证控制系统的稳定性、准确性和快速 性。在实际系统尚未建立、不存在的情况下,系统和其活动本质的复现,是 根据被研究的真实系统的数学模型来研究系统性能的。仿真的目的就在于此。现在尤其是指利用计算机去研究数学模型行为的方法。计算机仿真的基本内 带式输送机张紧装置油缸 11/16 容包括系统、模型、算法、计算机程序设计与仿真结果显示、分析与验证等 环节。在系统仿真技术的诸多环节中,算法和计算机程序设计是很重要的两 个环节,它直接决定原来问题是否能够正确地求解。国际上仿真领域最权威、最实用的计算机工具一一 MATLAB
21、/SIMULINK 就是诸多仿真软件中的一个 佼佼者,MATLAB/SIMULINK 的出现不仅使数值分析与应用进入了一个崭 新的阶段,而且也为系统仿真技术提供了更实用、更方便的解决方法。在本文所设计的带式输送机液压拉紧系统没有建立的情况下,建立系统 的数学模型,根据系统的闭环传递函数式,对系统进行仿真,得到系统的响 应曲线。就可以从图中得到反映系统动态品质的一系列重要指标,如上升时 间、峰值时间、最大超调量、调整时间等;辽宁工程技术大学硕士学位论文 利用 Simulink 对系统进行仿真,仿真过程是交互的,可以随时修改仿 真参数,并立即可以直观的得到仿真结果,既方便又实用。在液压系统设计 中
22、,利用 Simulink 能够大大简化设计流程,系统 Simulink 模型是一种以 系统环节方块图为基础的方块图模型,十分直观。系统典型环节或常用环节 的方块图在 Simulink 模块库中都可以找到,因此建立系统的 Simulink 模 型非常方便快捷。在仿真过程中可以方便的模拟实际系统,反复调整各种参 数,很快达到最佳设计要求31-3810 3.3.1 仿真参数的确定 (1)本文所选用的带式输送机的仿真参数,按表 3-1 输送机设计要求选 取。表 3-1 带式输送机设计指标 输送机的输送能力Qt 2500 t/h(2800 M3/h)胶带机长度 1000 m 支撑辊摩擦系数 3 0.02
23、 胶带宽 1400 mm 主动滚筒摩擦系数 0.5 胶带弹性系数 200 KN/m 胶带线密度 452 kg/m 胶带负载长度 980 m 煤在胶带上的线密度 174 kg/m 空载加速度 1.0 m/s 2 带式输送机张紧装置油缸 12/16 有负载加速度 0.2 m/s2 空载加速时间 3s 负载加速时间 30s 传送速度 4.0 m/s 拉紧滚筒处拉紧力 100 KN 启动时拉紧力 150 KN 正常工作拉紧力波动范围t5KN(15%)液压缸响应时间_0.5s (2)拉紧油缸的技术参数 a.油缸工作行程的确定 _一1_ 由图 3-1 可知 s=-AL 2 式中。一油缸行程;AL 一一拉紧
24、小车的行程。根据一般设计资料,带式输送机拉紧小车的拉紧行程应综合考虑胶带的 辽宁工程技术大学硕士学位论文 受拉力产生的弹性变形、胶带接头长度及输送机胶带长期使用后产生的永久 性塑性变形,对于整芯胶带,总体按 1%选取。按本文输送机的铺设长度为 1000m 计算,则 AL=l Om,油缸行程:=5m。从经济角度考虑,可将油缸的 行程适当选得小些,在输送机安装时进行初期张紧,拉紧油缸进行二次拉紧。拉紧油缸更主要的作用是吸收输送机启动时其下分支胶带产生的弹性伸长、胶带长期使用后产生的永久塑性变形及胶带受外载冲击引起的震荡波动产生 的变形。所以,确定油缸行程:=Zmo b.油缸缸径的确定 油缸拉力可按
25、下式计算 F一二(D,一d 2 V4000 ,(3-28)式中 D 一一油缸缸径,mm;d-活塞杆杆径,p 一一工作油压,MPao 根据钢丝绳缠绕方式,显然 F=2F 车(F 车为拉紧小车所需的拉力)。由带式输送机的设计要求知拉紧小车的最大拉紧力为 150KN,则 F=2F 二=2 X 150=300(KN)。确定 p=21 MPa,代入上式,得:F;zp(D,一 d2)/4000;D=(16000 F/3np)u2=155.8mm;带式输送机张紧装置油缸 13/16 取 D=160mm,d=90mm;根据设计要求的负载力和速度,选取不对称液压缸作为拉紧装置的执行 元件,油缸的参数见表 3-2
26、 所示。表 3-2 油缸的技术参数 D(mm)d(mm)vl(mm/s)v2(mm/s)S(mm)Pi(MPa)AL(mm2)Ap(mm2)160 90 130 225 2000 14 20096 13737 (3)选取电液伺服阀 由于输送机系统要求拉紧装置快速响应,这就要求电液伺服阀要有较大 辽宁工程技术大学硕士学位论文 的流 t,选取北京机床研究所 QDY1-6200-15 型力矩马达式电液伺服阀:额 定流 A Qeo(无载)200L/min,额定电流 15mA,幅频宽 1 OOHZ a 令伺服阀:稳态情况:有载流量:Pe=Ps=21 Mpa PL=14 Mpa QL 一。厚一 115 L
27、/min 可求得.液压缸缩入时的最大速度:v,_鱼=130 mm/s AP 液压缸伸出时的最大速度:v2 一争=,mm/s “P(4)阀控缸的相关参数 根据祈选元件从相关资料选出,具体参数见表 3-3.阀的流量压力系数:口,115_,。,_ K_=一尸 zL=,尸一二共,一,=1.37 x 10-m isPa 2(Ps 一 PL)2(21 一 14)x 100 阀的流量系数:K-=少=1.2810-4 m3/s.Pa 15 表 3-3 阀控缸的相关参数 参数数值 参数数值 带式输送机张紧装置油缸 14/16 K,1.37x 100m3/sPa cep 0.163 X 10 12 m3/sPa
28、K9 1.28 X 104M3/smA Ps 21 MPa 心 0.162x 1012 m3/sPa PL 14 MPa K 200KN/m m,4000kg 几 6.9X lOBN/m2 辽宁工程技术大学硕士学位论文 3.3.2 由仿真参数求得系统传递函数值 根据上节求得系统的传递函数:c(S)H(S)=一,_了 Sz。、A o V.,价 A 7-2+1I 屯以声一 I 、升 J,互+,丫 Sz2 十 2o S+,)、rar A 巧 coo”“”二(3-29)代入仿真参数可以求得式中 Kre=K,+CIP-1.37、10-0+2.435、10-3”(3-30)负载的固有频率、摄=忽瓢=7.0
29、7rads-(3 一,液压弹簧刚度 C。-P 夕 6.9 x 108 x 137372 x 10-12 13737 x 10-6 x 1=9.48 x106N/m(3-32)由于 K+Kh,即负载刚度远小于液压弹簧刚度,液压弹簧与负载弹簧串联 偶合的刚度与阻尼系数之比。KreK=一A2 二 P 1.37 x 10-o x 200000 (3-33)137372 x 10-12=0.145rad.s-液压固有频率 cob=_Fm&-=.19.48X106N/m YmrV 4000kg 带式输送机张紧装置油缸 15/16 二 48.7radS 一,(3-34)因为 W.+Wh 所以液压弹簧与负载弹
30、簧并联偶合的刚度与负载质量形 成的固有频率%“Wh=48.7radS 一,(3-35)辽宁工程技术大学硕士学位论文 阻尼比 j6,K,.,V,l+(K/K,)=0.7.(3-36)系统的开环增益 Ka=、Kq A,K r 一 1.28、104&K,Kf (3-37)“Kce 根据前面章节的分析,液压固有频率必。是比较容易确定的量,其变化范 围也不大,可以有把握地使用,而液压阻尼比易随工况的变化会发生很大的 变化,是难以准确确定的量,其计算值与实际值相差很大,实测一般为 0.20.7,这里取氛=0.7.3435 仿真选用伺服阀,其固有频率约为 1 OOHZ,远大于。和%,可以将其看 成比例环节,
31、即 G.,(S)=1 0 因此方块图可以简化如图 3-7 所示。U,+U K 伴 4 K G.,(S Yv0 dV N 1.28 x 10410.025+1(6.9S+1X0.00042SZ+0.045+1 Kf 图 3-7 简化的力控系统方块图 通过简化,可得系统的开环传递函数为 G(S)H(S)=1.28 x 104:。、,二,(0.0252+1)(6.9S+1 如.0004252+0.04S+;”(3-38)3.3.3 系统分析及校正 用 Simulink 搭接出皮带液压拉紧装置的系统动态模型。搭接的回路如图 3-8 所示,其中的常数 K=1.28 x 104,对于 Kf 来说,仿真中可
32、以看作单位负反 馈,即 Kf=1。取伺服放大器增益 Ka=7.8 x 10-3,伺服阀增益 K,=1 a 辽宁工程技术大学硕士学位论文.月工自 l.1.0.陌门压.|S _ _Step Gain 图 3-少 Gain1 a.口针,带式输送机张紧装置油缸 16/16 Transfer Fcn 0.02s2+1 o.ooo 乒 o.oa1 Transfer Fcn1 Gain2 8 Simulink 系统模型图 当输入阶跃信号时,系统的闭环响应曲线如图 3-9 所示。图 3-9 系统响应曲线 由图 3-9 可以看到曲线在 3s 之后基本上达到稳定,响应相对较慢,由于 辽宁工程技术大学硕士学位论文
33、皮带刚度 K 与液压弹簧刚度瓜相对非常小,使 0.02s+1 环节中的 0.02s2 系 数过大,稳态时出现了振动现象。控制精度达不到要求,加入 1 0.0252+1 消除 振荡,增加开环增益 Ko,来提高控制精度。但单纯增加系统开环增益 Ko31 将使系统不稳定,因此,必须加入校正装置提高 Ko 值。通过上述仿真分析可知,影响液压系统性能的因素主要是:开环增益 ko,液压系统固有频率 WO、和液压系统阻尼比晶。而影响ko.和易的参数很 多,这些参数对系统性能的影响是存在矛盾的,合理选取参数值达到系统的 最优性能是研究的首要内容。但是,在进行参数设计时,为了满足系统的原 始数据要求,如负载、速
34、度等,系统的各种结构参数就基本确定了。如果再 想通过改变结构参数来提高系统性能则潜力不大。因此为了使系统达到全部 性能指标,就要对系统进行校正。电液伺服系统综合了电气和液压两方面的 优点,其校正比较方便。电液伺服系统的校正方法很多,主要有两种常用的 方法:滞后一超前网络和 PID 校正30320 下面对系统进行校正,加入 PID 控制器,以达到对系统性能的调节。加入 PID 控制器后,系统搭接的回路如图 3-10 所示。图 3-10 Simulink 系统模型图 加入 PID 后,根据各参数对系统的控制作用,先由小到大调 Kp;若动态 性能和稳态精度不能满足要求,将 Kp 略微减小:由小到大调 KI,若动态性 能还不能令人满意,由小到大调 KD,直到符合要求。经反复调试,确定 Kp,KI,KD 三参数的整定值 Kp=3,KI=0.6,KD=4 39。从而得出加入 PID 控制 器后系统的响应曲线,如图 3-11 所示。辽宁工程技术大学硕士学位论文 图 3-11 校正后系统响应曲线 从响应曲线可以看出在输入阶跃信号的时候,即在皮带受到一个冲击的 时候,活塞杆做出反应,消减冲击力的影响,很快达到原有的平衡状态。