《331分式的加减法(一).doc》由会员分享,可在线阅读,更多相关《331分式的加减法(一).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四课时课 题3.3.1 分式的加减法(一)教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.教学难点当分式的分子是多项式时的
2、分式的减法.教学方法启发与探究相结合教具准备投影片四张:第一张:提出问题,(记作3.3.1 A);第二张:想一想,做一做,(记作3.3.1 B);第三张:想一想,(记作3.3.1 C);第四张:议一议,(记作3.3.1 D);第五张:例1,记作(3.3.1 E);第六张:补充练习,(记作3.3.1 F).教学过程.创设现实情境,提出问题师上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片 3.3.1 A) 问题一:从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路、2 km的下坡路.小丽在上坡路上的骑车速度为
3、v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?生问题一,根据题意可得下列线段图:生1解:(1)+=;生2解:(2)=;生3解:+=.师我们一块来讲评一下上面三位同学的运算过程.生第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=x+2.生 我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我
4、觉得小亮的方法更简单.就像分数运算:+.如果+=+=+=,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即+=+=+=.生 我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.师同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如+,a和4a的最简公分母是4a.下面我们再来看几个例子.生老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.生我们组也是用了将异分母的
5、分式相加减转化成同分母相加减的分式运算.例1中的第(1)题,一个分母是a,另一个分母是5a,利用分式的基本性质,只需将第一个分式化成=即可.解:(1)+=+=;生我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x1,另一个分式的分母是1x,我们注意到了1x=(x1),所以要把化成分母为x1的分式,利用分式的基本性质,得=.所以第(2)题的解法如下:(2)+=+=师同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.生问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为+=+=h.(2)小丽走第一条路所用的时间为h.作差可知=0.所以小丽走第一条路花费的时间少,少用h.应用、升华1.随堂练习第1题计算:(1);(2)+;(3)解:(1)=;(2)+=+=;(3)=.2.补充练习(出示投影片3.3.1 F).课后作业习题3.4第1、2、3题.活动与探究已知x+=z+=1,求y+的值.过程已知条件实际上是一个方程组,我们可以取其中两个方程x+=1,z+=1,由这两个方程把y、z都用x表示后,再求代数式的值.结果由x+=1,得y=,由z+=1,得z=.所以y+=+=+=1.板书设计