《2009年高考数学二轮复习专题讲座3(修改).doc》由会员分享,可在线阅读,更多相关《2009年高考数学二轮复习专题讲座3(修改).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、函数与导数函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容函数是中学数学的最重要内容,它既是工具,又是方法和思想二考查函数的基本知识,如定义域、值域、解析式、单调性、奇偶性、周期性等有的考题只考查函数的某一个方面的知识,而有的则体现出对函数知识的综合考查,常常涉及数形结合、特殊与一般(特殊化与一般化)、存在性与全称性问题等思想与方法1考查函数的三要素(定义域、值域、解析式)(1)函数f(x)的定义域是 (2)函数的值域是 (3)设 (4)若函数(常数)是偶函数,且它的值域为,则该函数的解析式 2考查函数的性质(单调性,奇偶性,对称性,周期性,最值等)(1)已知函数若
2、为奇函数,则_.(2)若函数f(x)是定义在R上的偶函数,在上是减函数,且f(2)=0,则使得f(x)得x2或x0,故f(x)的单调递增区间是(,0),(2,);由f(x)0得0x2,故f(x)的单调递减区间是(0,2).()由()得f(x)3x(x-2),令f(x)0得x=0或x=2.当x变化时,f(x)、f(x)的变化情况如下表:X(-.0)0(0,2)2(2,+ )f(x)+00f(x)增极大值减极小值增由此可得:当0a1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值;当a=1时,f(x)在(a-1,a+1)内无极值;当1a3时,f(x)在(a-1,a+1)内有极小值
3、f(2)6,无极大值;当a3时,f(x)在(a-1,a+1)内无极值.综上得:当0a1时,f(x)有极大值2,无极小值,当1a3时,f(x)有极小值6,无极大值;当a=1或a3时,f(x)无极值.2已知是函数的一个极值点。()求;()求函数的单调区间;()若直线与函数的图象有3个交点,求的取值范围。解:()因为 所以 因此()由()知, 当时,当时,所以的单调增区间是的单调减区间是()由()知,在内单调增加,在内单调减少,在上单调增加,且当或时,所以的极大值为,极小值为因此 所以在的三个单调区间直线有的图象各有一个交点,当且仅当因此,的取值范围为。3已知函数(),其中()当时,讨论函数的单调性
4、;()若函数仅在处有极值,求的取值范围;()若对于任意的,不等式在上恒成立,求的取值范围解:()当时,令,解得,当变化时,的变化情况如下表:02F(x)000减极小值增极大值减极小值增所以在,内是增函数,在,内是减函数(),显然不是方程的根为使仅在处有极值,必须成立,即有解些不等式,得这时,是唯一极值因此满足条件的的取值范围是()由条件,可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立所以,因此满足条件的的取值范围是解决函数综合问题要注意下列几点:(1)第一问题通常不是太难,主要是与函数有关的概念与方法,但非常重要。往
5、往是后面小题的知识准备或方法上的提示。所以第一小题要做好做准。再看后面问题与每一小题的联系,然后选择适当的途径解决问题。(2)通过不同途径了解、洞察所涉及到的函数的性质。在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。在上述性质中,知道信息越多,则解决问题越容易。(3)能画出示意图,则对解决问题起到很大的帮助。作图要注意图象整体,局部,细节. 细节。结合函数的定义域,奇偶性,值域,渐近线单调性,周期性,特定区间,极值最值点,坐标轴的交点,边界点。带有参数的函数问题要注意不动点。对于两个图像问题要关注交点个数,图形的相对位置。(4)通过求导来研究函数性质是一种非常重要而有效的
6、方法。通常的步骤:先求导,要注意求导后定义域的情况;将导数整理变形,能看出导数的符号性质或零点。再列表,从表中回答所要求解答的问题。(5)对于含有字母参数的问题,可以通过分类,延伸长度,从而降低难度。也可以通过分离变量,转化为函数或不等式问题去解决。六针对函数小题,给各位老师提出如下建议:(1)给自己的学生一个准确的定位,确定练习题的难度,对于高考省均分以下的同学来说,要抓好基础问题和常用的思想方法,把基础题做稳做熟,一般来说,不超过2个基本知识点的问题可以算容易题,3个以上的算中等题,解题方向不明确,需要经过探索发现思路,或需要较复杂的分类或转化的问题可以算难题,老师要根据学生的状况确定三个
7、层次问题的比例(2)抓好基础题型的练习,再复杂的问题经过分解后都是由基本题型复合而成的(3)鼓励学生做好解题后的反思,尤其对于做错的问题一定要分析清楚错误的原因,例如分类的界点,特殊情形,有些基础运算做错是因为运算习惯不好(改变运算习惯而不是以粗心概论)等并在以后的解题中有意识避免类似错误(4)对一些比较定型的问题要归纳出一般的方法,如数形结合解决一些方程、不等式的问题,用分离变量的方法解决恒成立、存在性的问题(5)教会一些探索性的方法,如尝试的意识,如一般化与特殊化的方法,如数形结合、化归、等价转化的思想等注意培养学生独立思考以解决问题的习惯(6)教师在教学中要注意多让学生谈思路,不宜过多地以自己的思维代替学生的思维20