《第二讲随机变量的定义及分布优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第二讲随机变量的定义及分布优秀PPT.ppt(69页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二讲随机变量的定义及分布第二讲随机变量的定义及分布第一页,本课件共有69页本章学习的目标:本章学习的目标:复习概率与随机变量的理论复习概率与随机变量的理论加深随机变量函数的理论(重点)加深随机变量函数的理论(重点)深化一些重要概念的理解深化一些重要概念的理解加深多维正态随机变量的理论加深多维正态随机变量的理论增加增加MatlabMatlab的统计分析函数的统计分析函数(自主学习)自主学习)第二页,本课件共有69页1.1 1.1 概率的基本术语概率的基本术语 随机试验随机试验(Random Experiment):(Random Experiment):满足下列三个条件的试验称为随机试验:满足
2、下列三个条件的试验称为随机试验:(1)(1)在相同条件下可重复进行;在相同条件下可重复进行;(2)(2)试验的结果不止一个,所有可能的结果能事先明确;试验的结果不止一个,所有可能的结果能事先明确;(3)(3)每次试验前不能确定会出现哪一个结果。每次试验前不能确定会出现哪一个结果。例:投掷硬币例:投掷硬币(Toss a coin)The outcome varies in an unpredictable fashion when the experiment is repeated under the same conditions.第三页,本课件共有69页随机事件随机事件(Random Ev
3、ent):(Random Event):在随机试验中,对试验中可能出现也可能不出现、在随机试验中,对试验中可能出现也可能不出现、而在大量重复试验中却具有某种规律性的事情,称而在大量重复试验中却具有某种规律性的事情,称为随机事件,简称为事件。为随机事件,简称为事件。如投掷硬币出现正面就是一个随机事件。如投掷硬币出现正面就是一个随机事件。第四页,本课件共有69页基本事件基本事件(Elementary Event):(Elementary Event):随随机机试试验验中中最最简简单单的的随随机机事事件件称称为为基基本本事事件件,如如投投掷掷骰骰子子出出现现1 1、2 2、.、6 6点点是是基基本本
4、事事件件,出现偶数点是随机事件,但不是基本事件。出现偶数点是随机事件,但不是基本事件。(简单事件简单事件Simple Event)Simple Event)第五页,本课件共有69页样本空间样本空间(Sample Space)(Sample Space)随机试验的所有基本事件组成的集合称为样本空间随机试验的所有基本事件组成的集合称为样本空间.Toss a coin:S=Head,Tail=H,TToss a die:S=1,2,3,4,5,6第六页,本课件共有69页关于样本空间的注释:关于样本空间的注释:离散的样本空间离散的样本空间Toss a die:S=1,2,3,4,5,6连续的样本空间连
5、续的样本空间由多次子试验构成的样本空间看下例由多次子试验构成的样本空间看下例第七页,本课件共有69页IF we toss a coin three times and let the triplet xyz denote the outcome“x on the first toss,y on the second toss,z on the third toss”,then the sample space of the experiment isS=HHH,HHT,HTH,HTT,THH,THT,TTH,TTTThe event“one head and two tails”is defi
6、ned byE=HTT,THT,TTH第八页,本课件共有69页关于样本空间的注释:关于样本空间的注释:离散的样本空间离散的样本空间Toss a die:S=1,2,3,4,5,6连续的样本空间连续的样本空间由多次子试验构成的样本空间由多次子试验构成的样本空间可数无穷的样本空间可数无穷的样本空间S=S1 S1 =HH,HT,TH,TT,S1=H,T第九页,本课件共有69页频率和概率频率和概率(Frequency and Probability):(Frequency and Probability):n n次重复试验中,次重复试验中,事件事件A A发生的次数发生的次数n nA A:-事件事件A
7、A的的频数频数比值比值n nA A/n:-/n:-事件事件A A发生的发生的频率频率概率概率频率反映了事件频率反映了事件A A发生的频繁程度,若事件发生的频繁程度,若事件A A发生的发生的可能性大,那么相应的频率也大,反之则较小。可能性大,那么相应的频率也大,反之则较小。第十页,本课件共有69页1.2 1.2 随机变量的定义随机变量的定义(Definition of a random variable)(Definition of a random variable)设随机试验设随机试验E E的样本空间为的样本空间为S=eS=e,如果对于每一个,如果对于每一个e e S S,有一个实数,有一个
8、实数X(e)X(e)与之对应,这样就得到一个定与之对应,这样就得到一个定义在义在S S上的单值函数上的单值函数X(e)X(e),称,称X(e)X(e)为随机变量,简记为随机变量,简记为为X X。随机变量是定义在样本空间随机变量是定义在样本空间S S上的单值函数上的单值函数1.1.定义定义第十一页,本课件共有69页Interpretation of random variable:SeReal lineRandom variable is a function that assigns a numerical value to the outcome of the experiment.第十二页
9、,本课件共有69页A coin tossSe1Real line10e2Mapping of the outcome of a coin toss into the set of real number第十三页,本课件共有69页A discrete random variable is a random variable that can be take on at most a countable number of possible values根据随机变量取值的不同可以分为:根据随机变量取值的不同可以分为:连续型随机变量连续型随机变量(Continuous random variable
10、)(Continuous random variable)离散型随机变量离散型随机变量(Discrete random variable)(Discrete random variable)第十四页,本课件共有69页2.2.概率分布列概率分布列Xx1x2.xnpkp1p2.pnProbability mass function(PMF)第十五页,本课件共有69页(1)(0,1)(1)(0,1)分布分布 随机变量的可能取值为随机变量的可能取值为0 0和和1 1两个值,其概率分布为两个值,其概率分布为PMF:0 1第十六页,本课件共有69页Bernoulli random variableLet
11、A be an event of interest in some experiment,e.g.,a device is not defective.We say that a“success”occurs if A occurs when we perform the experiment.Bernoulli random variable IA is equal to 1 if A occurs and zero otherwise.第十七页,本课件共有69页(2)Binomial 独立地进行独立地进行n次贝努利试验,事件次贝努利试验,事件A发生发生m次的概率次的概率刚好是刚好是 展开的
12、第展开的第m+1项的系数项的系数例:雷达双门限检测器例:雷达双门限检测器第十八页,本课件共有69页Example:Transmission error in a binary communications channel.Let X be the number of errors in n independent transmissions.Find the PMF of X.Find the probability of one or fewer errors0101 1-1-第十九页,本课件共有69页The probability of k errors in n bits transmi
13、ssions is given by the probability of an error pattern that k 1s and n-k 0s X is a binomial random variable第二十页,本课件共有69页例:信息传输问题(例:信息传输问题(Message Transmissions)Let X be the number of times needs to be transmitted until it arrivers correctly at its destination.Find the probability that X is an a even
14、 number.X is a discrete random variable taking on values from S=1,2,3,.(3)geometric random variable第二十一页,本课件共有69页The event X=k occurs if k-1 consecutive erroneous transmissions(failures)followed by a error-free one(success)X is called the geometric random variable第二十二页,本课件共有69页泊松分布泊松分布(Poisson distr
15、ibution)(Poisson distribution)例:交通路口在单位时间内通过的车辆数例:交通路口在单位时间内通过的车辆数第二十三页,本课件共有69页1.3 1.3 分布函数和概率密度函数分布函数和概率密度函数Probability Density Function,(PDF)Distribution Function or Cumulative Distribution Function,(CDF)1.定义定义第二十四页,本课件共有69页右连续2.分布函数的性质(分布函数的性质(Properties of the CDF)第二十五页,本课件共有69页分布函数是右连续的不减函数,在负
16、无穷处为零,正无分布函数是右连续的不减函数,在负无穷处为零,正无穷处为穷处为1 1。对于连续型随机变量,取某一特定值的概率。对于连续型随机变量,取某一特定值的概率是为零的。即是为零的。即PX=x=0PX=x=0第二十六页,本课件共有69页对于离散型随机变量,分布函数为阶梯函数,阶梯的跳变对于离散型随机变量,分布函数为阶梯函数,阶梯的跳变点出现在随机变量的取值点上,跳变的高度为随机变量取点出现在随机变量的取值点上,跳变的高度为随机变量取该值的概率。该值的概率。第二十七页,本课件共有69页对于离散型随机变量,对于离散型随机变量,PMF与与CDF的关系为的关系为第二十八页,本课件共有69页概率密度概
17、率密度随机变量落入(x1,x2)的概率 第二十九页,本课件共有69页对于离散型随机变量,它的概率密度函数是一串对于离散型随机变量,它的概率密度函数是一串 函数之和,函数之和,函数出现在随机变量的取值点,强度为取该值的概率。函数出现在随机变量的取值点,强度为取该值的概率。第三十页,本课件共有69页第三十一页,本课件共有69页3.3.常见概率分布常见概率分布 正态分布(正态分布(NormalNormal),也称高斯(),也称高斯(GaussGauss)分布)分布 -4-3-2-10123400.10.20.30.40.50.60.70.8N(0,1)N(0,1)正态分布概率密度正态分布概率密度 标
18、准正态分布函数第三十二页,本课件共有69页瑞利分布(瑞利分布(RayleighRayleigh)瑞利分布概率密度瑞利分布概率密度 2 2 02468101200.050.10.150.20.250.30.350.4第三十三页,本课件共有69页指数(指数(ExponentialExponential)分布)分布指数分布概率密度指数分布概率密度 0123456700.511.5第三十四页,本课件共有69页 对数正态分布(对数正态分布(LogNormalLogNormal)高分辨率雷达杂波分布高分辨率雷达杂波分布01234567891000.10.20.30.40.5对数正态分布概率密度对数正态分布
19、概率密度 为尺度参数为形状参数第三十五页,本课件共有69页1.4 1.4 多维随机变量及其分布多维随机变量及其分布 Multiple Random Variables and Distributions Multiple Random Variables and Distributions 1.定义定义Se第三十六页,本课件共有69页2.2.二维分布函数和概率密度二维分布函数和概率密度 Bivariate CDF and PDF Bivariate CDF and PDF 二维分布函数图解二维分布函数图解 定义:定义:第三十七页,本课件共有69页二维分布函数性质:二维分布函数性质:边缘(边缘(
20、MarginalMarginal)分布)分布由二维分布函数可以求出一维分布函数由二维分布函数可以求出一维分布函数 第三十八页,本课件共有69页二维概率密度:二维概率密度:由二维概率密度可以求出边缘概率密度由二维概率密度可以求出边缘概率密度第三十九页,本课件共有69页随机变量落在某个区域的概率随机变量落在某个区域的概率 第四十页,本课件共有69页3.3.条件分布条件分布(Conditional Distribution)(Conditional Distribution)条件分布函数条件分布函数条件概率密度条件概率密度称随机变量称随机变量X X、Y Y独立独立第四十一页,本课件共有69页Exam
21、ple:Communication Channel with Discrete Input and Continuous Outputnoise voltage NU(-2,2)通信信道通信信道X:+1 or -1Find PX=+1,Y0Y第四十二页,本课件共有69页Solution:1/2When the input X=1,the output Y is uniformly distributed in the interval Therefore第四十三页,本课件共有69页1.5 1.5 随机变量的数字特征随机变量的数字特征 均值均值 方差方差 协方差与相关系数协方差与相关系数 协方差
22、矩阵协方差矩阵 举例举例第四十四页,本课件共有69页1.1.均值均值(Mean)Mean)算术平均:算术平均:所有可能取值等概率加权所有可能取值等概率加权统计平均值:统计平均值:所有可能取值按概率加权所有可能取值按概率加权连续型随机变量:连续型随机变量:离散型随机变量:离散型随机变量:第四十五页,本课件共有69页性质:性质:如果如果X X和和Y Y相互独立,相互独立,如果如果EXY=0,则称,则称X和和Y正交正交(Orthogonal)。第四十六页,本课件共有69页2.2.方差方差(Variance)(Variance)方方差差反反映映了了随随机机变变量量X X的的取取值值偏偏离离其其均均值值
23、的的偏偏离离程程度度或或分分散散程度,程度,D(X)D(X)越大,则越大,则X X的取值越分散。的取值越分散。第四十七页,本课件共有69页性质:性质:如果如果X X1 1,X,X2 2,.,X,.,Xn n相互独立。相互独立。第四十八页,本课件共有69页Variance is a nonlinear operator第四十九页,本课件共有69页3.3.协方差和相关系数协方差和相关系数(Covariance and Correlation coefficient)(Covariance and Correlation coefficient)如果如果X和和Y相互独立,则相互独立,则rXY=0,|
24、rXY|=1的充要条件是的充要条件是PY=aX+b=1第五十页,本课件共有69页we define X and Y to be uncorrelatedIf ,If X and Y are independent,then X and Y are uncorrelated.X and Y are independentX and Y are uncorrelatedTrueFalse第五十一页,本课件共有69页The correlation coefficient provides a measure of how good a prediction of the value of one o
25、f the two RVs can be formed based on an observed value of the other.1 indicates a high degree of linear between X and Y+1 means b0 and -1 means b0第五十二页,本课件共有69页Independent:UncorrelatedOrthogonal:第五十三页,本课件共有69页不相关就认为不相关就认为X与与Y没有关系吗?没有关系吗?例:例:为零均值正态随机变量,为零均值正态随机变量,Y 与与X相关吗?相关吗?Y是依赖于是依赖于X的的(Dependence)
26、,但但Y与与X不相关不相关(Uncorrelated),线性不相关的。线性不相关的。第五十四页,本课件共有69页Independent implies zero covariance but zero covariance does not imply independence.Example:Uncorrelated but dependent random variablesLet be uniformly distributed in the interval(0,2)。LetX and Y are uncorrelated but dependent第五十五页,本课件共有69页注意英文
27、单词的区别注意英文单词的区别:Correlation(Uncorrelated)Dependent(Independent)It can be shown that 第五十六页,本课件共有69页4.4.协方差矩阵(协方差矩阵(Covariance MatrixCovariance Matrix)多维随机变量通常用协方差矩阵来描述随机变量之间的相互关系。多维随机变量通常用协方差矩阵来描述随机变量之间的相互关系。第五十七页,本课件共有69页协方差矩阵是对称(共轭对称)的;协方差矩阵是对称(共轭对称)的;如果变量之间是不相关的,则如果变量之间是不相关的,则K K是一个对角阵。是一个对角阵。第五十八页
28、,本课件共有69页例例1:(0,1)分布随机变量,分布随机变量,PX=1=p,PX=0=q=1-p,求求X的均值和方差的均值和方差5.Expected value of some important random variableEX=1PX=1+0 PX=0=pEX2=12 PX=1+02 PX=0=pD(X)=E(X2)-(EX)2=p-p2=pq解解:第五十九页,本课件共有69页例例2(a,b)2(a,b)上均匀分布的随机变量,求均值和方差上均匀分布的随机变量,求均值和方差 第六十页,本课件共有69页例例3 3 求瑞利分布随机变量的均值和方差。求瑞利分布随机变量的均值和方差。第六十一页,
29、本课件共有69页常用分布及其数字特征归纳常用分布及其数字特征归纳Uniform Random Variable第六十二页,本课件共有69页Exponential Random Variable第六十三页,本课件共有69页Gaussian Random VariableRemark:Under a wide range of conditions X can be used to approximate the sum of a large number of independent random variable.第六十四页,本课件共有69页Gamma Random VariableRemar
30、k:Chi-Square random variable with k degree of freedom:k=2,=1/2第六十五页,本课件共有69页Laplacian Random Variable第六十六页,本课件共有69页Rayleigh Random Variable第六十七页,本课件共有69页随机变量的定义与分布随机变量的定义与分布(1)概率的基本术语:)概率的基本术语:随机试验随机试验 基本事件基本事件 随机事件随机事件 样本空间,频率与概率样本空间,频率与概率(2)随机变量的定义)随机变量的定义 从样本空间到实轴的映射从样本空间到实轴的映射(3)随机变量的分布)随机变量的分布 PMF CDF PDF 典型随机变量的分布典型随机变量的分布(4)条件分布)条件分布 小结小结第六十八页,本课件共有69页随机变量的数字特征随机变量的数字特征1.均值均值 反映随机变量取值的统计平均值反映随机变量取值的统计平均值2.方差方差 随机变量取值偏离均值的偏离程度随机变量取值偏离均值的偏离程度3.相关系数相关系数 X与与Y线性程度的度量线性程度的度量4.注意:线性不相关并不意味他们没有关系注意:线性不相关并不意味他们没有关系5.注意与独立的差别注意与独立的差别6.4.协方差矩阵协方差矩阵7.5.常见随机变量的数字特征常见随机变量的数字特征第六十九页,本课件共有69页