第三章应变状态理论优秀PPT.ppt

上传人:石*** 文档编号:78770811 上传时间:2023-03-19 格式:PPT 页数:31 大小:1.68MB
返回 下载 相关 举报
第三章应变状态理论优秀PPT.ppt_第1页
第1页 / 共31页
第三章应变状态理论优秀PPT.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《第三章应变状态理论优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第三章应变状态理论优秀PPT.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第三章应变状态理论第三章应变状态理论现在学习的是第1页,共31页 外力(或温度变化)作用下,物体内部各部分之间要产生相对运动。物体的这种运动形态,称为变形。本章任务有两个:1、分析一点的应变状态;2、建立几何方程和应变协调方程。现在学习的是第2页,共31页3.1 位移分量与应变分量几何方程位移分量与应变分量几何方程3.2 一点的形变状态一点的形变状态 形变张量形变张量3.3 转轴时应变分量的变换转轴时应变分量的变换3.4 主形变主形变 形变张量不变量形变张量不变量3.5 体应变体应变 应变协调方程应变协调方程现在学习的是第3页,共31页3.1 位移分量与应变分量位移分量与应变分量 几何方程几何

2、方程现在学习的是第4页,共31页 在外力作用下,物体整体发生位置和形状的变化,一般说来各点的位移不同。现在学习的是第5页,共31页 如果各点的位移完全相同,物体发生刚体平移;如果各点的位移不同,但各点间的相对距离保持不变,物体发生刚体转动等刚体移动。现在学习的是第6页,共31页 如果各点(或部分点)间的相对距离发生变化,则物体发生了变形。这种变形一方面表现在微线段长度的变化,称为线应变;一方面表现在微线段间夹角的变化,称为切应变。现在学习的是第7页,共31页 我们从物体中取出x方向上长dx的线段PA,变形后为PA,P点的位移为(u,v),A点x方向的位移为y方向上的位移为dxdx现在学习的是第

3、8页,共31页PA的正应变在小变形时是由x方向的位移所引起的,因此PA正应变为PA的转角为dxdx现在学习的是第9页,共31页 我们从物体中取出y方向上长dy的线段PB,变形后为PB,B点y方向的位移为x 方向上的位移为 PB的正应变在小变形时是由y方向的位移所引起的,因此PB正应变为:PB的转角为:现在学习的是第10页,共31页线段PA的转角是线段PB的转角是于是,直角APB的改变量为A有时用张量分量PAB现在学习的是第11页,共31页 这样,平面上一点的变形我们用该点x方向上的正应变、y方向上的正应变和xy方向构成的直角的变化来描述,称为应变分量,也就是所说的几何方程。从几何方程可见,当物

4、体的位移分量完全确定时,形变分量即完全确定。思考题:当形变分量完全确定时,位移分量是否能完全确定。现在学习的是第12页,共31页 同样,空间一点的变形我们用该点x、y、z方向上的正应变和xy、yz、zx方向构成的直角的变化切应变来描述。张量形式为现在学习的是第13页,共31页 空间的应变分量共九个分量,是一个对称张量,和应力张量一样,它们遵从坐标变换规则,同样存在着三个互相垂直的主方向,对应的主应变值是该张量的特征值。这些互相垂直的主方向构成的直角在该应变张量的变形时,角度不变,由主平面组成的单元体,由正方体变为直角长方体。在主方向构成的坐标系中,张量分量构成对角阵,切应变分量为零。现在学习的

5、是第14页,共31页物体除形变外,还存在转动、刚体位移:物体除形变外,还存在转动、刚体位移:(a)均匀形变均匀形变:u、v、w是线性函数,称为均匀形变;是线性函数,称为均匀形变;(b)刚体位移刚体位移:“形变为零形变为零”时的位移,即是时的位移,即是“与形变无关与形变无关的位移的位移”;(c)纯形变纯形变:形变分量不等于零,而转动分量等于零。:形变分量不等于零,而转动分量等于零。现在学习的是第15页,共31页3.2 一点的形变状态,形变张量一点的形变状态,形变张量现在学习的是第16页,共31页 相对位移张量相对位移张量 6个应变分量是通过位移分量的个应变分量是通过位移分量的9个一阶偏导,即:个

6、一阶偏导,即:引入引入其中其中 为那勃勒算子,为那勃勒算子,是是位移矢量,不难位移矢量,不难 算得算得 的的3个分量为个分量为:现在学习的是第17页,共31页 这里的这里的 称为转动矢量,而称为转动矢量,而 ,称为转动称为转动分量。分量。由此,可将相对位移张量分解为两个张量:由此,可将相对位移张量分解为两个张量:=+现在学习的是第18页,共31页 如物体中一点如物体中一点M M的形变分量为的形变分量为 则相对位移张量(非对称)可分解为应变张量与转动张量。则相对位移张量(非对称)可分解为应变张量与转动张量。上式,等号右边第一项为对称张量,表示微元体的纯上式,等号右边第一项为对称张量,表示微元体的

7、纯变形,称为应变张量,第二项为反对称张量,它表示微元变形,称为应变张量,第二项为反对称张量,它表示微元体的刚体转动,即表示物体变形后微元体的方位变化。体的刚体转动,即表示物体变形后微元体的方位变化。现在学习的是第19页,共31页 3.3 转轴时应变分量的变换转轴时应变分量的变换 x y z 设在坐标轴设在坐标轴oxyz下,物体内某一点的下,物体内某一点的6个应变分量为个应变分量为 。现使坐标轴旋转一个角度,新老坐标的关系为:。现使坐标轴旋转一个角度,新老坐标的关系为:其中其中 表示新坐标轴对老坐标轴的方表示新坐标轴对老坐标轴的方向余弦。向余弦。现在学习的是第20页,共31页 位移矢量在新坐标系

8、中的位移矢量在新坐标系中的3个分量个分量 分别为:分别为:其中为其中为3个新坐标轴的单位矢量。个新坐标轴的单位矢量。利用方向导数公式利用方向导数公式:现在学习的是第21页,共31页 同理,可求其它五个应变分量。经整理可得:同理,可求其它五个应变分量。经整理可得:于是新坐标系中的应变分量为于是新坐标系中的应变分量为 现在学习的是第22页,共31页 同理,可以给出某一点沿任意方向微分线段的伸长率同理,可以给出某一点沿任意方向微分线段的伸长率 张量式表示为张量式表示为现在学习的是第23页,共31页3.4 主形变,形变张量不变量主形变,形变张量不变量现在学习的是第24页,共31页 与应力状态相类似,把

9、切应变等于零的面称为主平面。主平面的法线方向称为主应变方向,主平面上的正应变就是主应变。同样存在第一、第二和第三应变不变量。现在学习的是第25页,共31页3.5 体应变体应变 应变协调方程应变协调方程现在学习的是第26页,共31页 体应变:物体变形后单位体积的改变。如给定的六面体,其微分体积为其变形后的体积为:则体应变为现在学习的是第27页,共31页l又可表示为:又可表示为:对于某一初始连续的物体,按某一应变状态变形后必须保持其整体性和连续性,即物体既不开裂,又不重叠,此时所给定的应变状态是协调的,否则是不协调的。现在学习的是第28页,共31页 从数学的观点说,要求位移函数 在其定义域内为单值

10、连续函数。如出现了开裂,位移函数就会出现间断;出现了重叠,位移函数就不可能为单值。因此,为保持物体变形后的连续性,各应变分量之间,必须有一定的关系。现在学习的是第29页,共31页l由前面的讨论可知,在小变形情况下的六个应变分量是通由前面的讨论可知,在小变形情况下的六个应变分量是通过六个几何方程与三个位移函数相联系的。如已知位移分过六个几何方程与三个位移函数相联系的。如已知位移分量量 ,极易通过几何方程求得各个应变分量。,极易通过几何方程求得各个应变分量。l但反过来,如给定一组应变但反过来,如给定一组应变 ,几何方程是关于,几何方程是关于未知位移函数未知位移函数 的微分方程组,其中包含了六个的微

11、分方程组,其中包含了六个方程,但仅三个未知函数。由于方程的个数超过了方程,但仅三个未知函数。由于方程的个数超过了未知数的个数,如任意给定未知数的个数,如任意给定 ,则几何方程不一,则几何方程不一定有解,仅当定有解,仅当 ,满足某种可积条件,或称为,满足某种可积条件,或称为应变协调关系时,才能由几何几何方程积分得到单应变协调关系时,才能由几何几何方程积分得到单值连续的位移场。值连续的位移场。现在学习的是第30页,共31页ijij应变张量各分量满足的应变协调条件:应变张量各分量满足的应变协调条件:可看出,前三式分别是可看出,前三式分别是xyxy,yzyz,zxzx平面内的应变分量的协调平面内的应变分量的协调方程,后三式分别是正应变方程,后三式分别是正应变iiii,和三个剪应变之间的协调,和三个剪应变之间的协调方程。方程。从从物理意义物理意义上讲:如果位移函上讲:如果位移函数是连续的变形,自然也就可数是连续的变形,自然也就可以协调。因而在以后用以协调。因而在以后用位移法位移法解题时,应变协调方程可以自然解题时,应变协调方程可以自然满足,而用满足,而用应力法应力法解题时,则解题时,则需要同时考虑应变协调方程。需要同时考虑应变协调方程。现在学习的是第31页,共31页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁