《刚体的定轴转动课件优秀PPT.ppt》由会员分享,可在线阅读,更多相关《刚体的定轴转动课件优秀PPT.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、刚体的定轴转动课件1第1页,本讲稿共26页演示实验演示实验1、茹茹科科夫夫斯斯基基转椅转椅(和车轮和车轮)2、陀螺仪、陀螺仪3、质质心心运运动动(杠杆杠杆)4、不不同同质质量量分分布布的的等等质质量量柱柱体体滚动滚动5、车轮进动、车轮进动一、刚体的定轴转动定律一、刚体的定轴转动定律二、转动刚体的角动量守恒二、转动刚体的角动量守恒三、刚体转动的功和能三、刚体转动的功和能四、无滑动滚动四、无滑动滚动 瞬时转轴瞬时转轴(补充)(补充)五、进动五、进动目目 录录第2页,本讲稿共26页一、刚体的定轴转动定律一、刚体的定轴转动定律 zO miri外力矩沿外力矩沿z轴分量的代数和轴分量的代数和刚体沿刚体沿z
2、轴的角动量轴的角动量刚体对刚体对z轴的转动惯量轴的转动惯量第3页,本讲稿共26页2、适用于转轴固定于、适用于转轴固定于惯性系惯性系中的情况。中的情况。3、对于转轴通过质心的情况,如果质心有加速度,对于转轴通过质心的情况,如果质心有加速度,上式也成立。上式也成立。(惯性力对质心的力矩和为零惯性力对质心的力矩和为零)1、由由关关于于定定点点的的质质点点系系角角动动量量定定理理,向向过过该该点点的固定转轴投影得到。的固定转轴投影得到。第4页,本讲稿共26页转动转动平面平面外力外力对固定转轴力矩的计算:对固定转轴力矩的计算:沿转轴方向:沿转轴方向:沿转轴反方向:沿转轴反方向转动平面内的分力转动平面内的
3、分力对转轴的力矩对转轴的力矩第5页,本讲稿共26页计算转动惯量的几条规律:计算转动惯量的几条规律:1、对同一轴可叠加:、对同一轴可叠加:2、平行轴定理:、平行轴定理:3、对薄平板刚体,有、对薄平板刚体,有垂直垂直轴定理:轴定理:JcJdmC质心质心 rix z yi xi mi y241mR第6页,本讲稿共26页常用的转动惯量常用的转动惯量直径直径薄球壳:薄球壳:直径直径球体:球体:过中点垂直于杆过中点垂直于杆细杆:细杆:过一端垂直于杆过一端垂直于杆圆柱体:圆柱体:对称轴对称轴第7页,本讲稿共26页【例例】转轴光滑,初态静止,求下摆到转轴光滑,初态静止,求下摆到 角时的角加速度,角速度,转轴受
4、力。角时的角加速度,角速度,转轴受力。第8页,本讲稿共26页解:解:刚体定轴转动刚体定轴转动1、受力分析受力分析2、关于关于O轴列轴列转动定理转动定理【思考思考】为什么不关于过为什么不关于过质心质心轴列转动定理?轴列转动定理?第9页,本讲稿共26页由由 求求 :第10页,本讲稿共26页(1)平动:平动:质心运动定理质心运动定理3、求转轴受力求转轴受力第11页,本讲稿共26页(2)转动:转动:关于质心轴列转动定理关于质心轴列转动定理为什么?为什么?第12页,本讲稿共26页【例例】一一长长为为L,质质量量为为m的的均均匀匀细细棒棒,水水平平放放置置静静止止不不动动,受受垂垂直直向向上上的的冲冲力力
5、F作作用用,冲冲量量为为F t(t很很短短),冲冲力力的的作作用用点点距距棒棒的的质质心心l远远,求求冲冲力力作作用后棒的运动状态。用后棒的运动状态。解解 (1)质心的运动质心的运动质心以质心以vC0的初速做上抛运动。的初速做上抛运动。lFC第13页,本讲稿共26页(2)在上抛过程中棒的转动在上抛过程中棒的转动绕过质心转轴,列转动定理:绕过质心转轴,列转动定理:lFC 在在上上抛抛过过程程中中,棒棒以以恒恒定定角角速度速度 绕过质心轴绕过质心轴转动。转动。【演示演示实验实验】质心运动质心运动(杠杆杠杆)第14页,本讲稿共26页二、转动刚体的角动量守恒二、转动刚体的角动量守恒1、绕定轴转动、绕定
6、轴转动2、几个刚体、几个刚体绕同一定轴绕同一定轴转动转动【演示演示实验实验】茹科夫斯基转椅茹科夫斯基转椅(和车轮和车轮)、陀螺仪、陀螺仪3、关于过质心轴、关于过质心轴若若合合外外力力矩矩为为零零,则则刚刚体体总总角角动动量量守守恒恒,角角动动量可在这几部分间传递。量可在这几部分间传递。若合外力矩为零,则刚体角动量守恒。若合外力矩为零,则刚体角动量守恒。若若对对过过质质心心轴轴合合外外力力矩矩为为零零,则则对对该该轴轴刚刚体体角角动量守恒。动量守恒。无论质心轴是否是惯性系。无论质心轴是否是惯性系。第15页,本讲稿共26页三、刚体转动的功和能三、刚体转动的功和能力矩的功力矩的功:不太大刚体的重力势
7、能不太大刚体的重力势能:机械能守恒定律机械能守恒定律:只有保守力做功时只有保守力做功时 合合外外力力矩矩对对一一个个绕绕固固定定轴轴转转动动的的刚刚体体所所做做的的功,等于它的转动动能的增加功,等于它的转动动能的增加第16页,本讲稿共26页用机械能守恒重解:用机械能守恒重解:转轴光滑,初态静止,求下摆到转轴光滑,初态静止,求下摆到角角时的角加速度,角速度。时的角加速度,角速度。第17页,本讲稿共26页解解:杆机械能守恒杆机械能守恒比用转动定律简单!比用转动定律简单!势能零点势能零点绕固定轴绕固定轴转动动能转动动能第18页,本讲稿共26页杆动能的另一种表达:杆动能的另一种表达:科尼西定理科尼西定
8、理势能零点势能零点质心动能质心动能绕过质心轴绕过质心轴转动动能转动动能第19页,本讲稿共26页四、刚体的无滑动滚动四、刚体的无滑动滚动 瞬时转轴瞬时转轴(补充)(补充)1、平面平行运动平面平行运动只考虑圆柱,球等只考虑圆柱,球等轴对称刚体轴对称刚体的滚动。的滚动。质心做平面运动绕过质心垂直轴做转动质心做平面运动绕过质心垂直轴做转动2、无滑动滚动:、无滑动滚动:RCp 任意时刻接触点任意时刻接触点P 瞬时静止瞬时静止无滑动滚动条件:无滑动滚动条件:【思考思考】下一时刻下一时刻P点位置?点位置?第20页,本讲稿共26页转动惯量小的滚得快!转动惯量小的滚得快!【演示实验演示实验】不同质量分布的等质量
9、柱体滚动不同质量分布的等质量柱体滚动质心运动定理质心运动定理过质心轴转动定理过质心轴转动定理纯滚动条件纯滚动条件(运动学条件运动学条件)【例例】两两个个质质量量和和半半径径都都相相同同,但但转转动动惯惯量量不不同同的的柱柱体体,在在斜斜面面上上作作无无滑滑动动滚滚动动,哪哪个个滚滚得得快快?mgfRCxy第21页,本讲稿共26页3、轴对称、轴对称刚体无滑动滚动刚体无滑动滚动中的瞬时转轴中的瞬时转轴CpABDEF 时时刻刻t 接接触触点点P 瞬瞬时静止;时静止;在在时时间间(tt+t)内内,以以P点点为为原原点点建建立立平平动坐标系;动坐标系;时时间间(t t+t)内内,刚刚体体的的运运动动(质
10、质心心平平动动、绕绕质质心心轴轴转转动动)可可以以看看成成:绕绕过过 P 点点且且垂垂直直于于固固定定平平面面的转轴的无滑动滚动。的转轴的无滑动滚动。接触点接触点P:瞬时转轴瞬时转轴瞬时转动中心瞬时转动中心第22页,本讲稿共26页绕绕瞬时转轴的转动定理的形式?瞬时转轴的转动定理的形式?虽虽然然p点点瞬瞬时时静静止止,但但有有加加速速度度,所所以以除除了了力力矩矩Mp外,还外,还应考虑惯性力矩。应考虑惯性力矩。下下面面证证明明:对对于于无无滑滑动动滚滚动动的的轴轴对对称称刚刚体体,接接触触点点p的的加加速速度度沿沿过过p点点的的半半径径方方向向,因因此此,关关于于过过p点的转轴,惯性力矩等于零。
11、点的转轴,惯性力矩等于零。惯惯性性力力作作用用在在质质心心上上,方方向向与与p点点的的加加速速度度方方向向相反。相反。关于过关于过p点转轴的转动惯量点转轴的转动惯量轴对称刚体,绕轴对称刚体,绕瞬时转轴的转动定理:瞬时转轴的转动定理:第23页,本讲稿共26页证明:证明:p点相对惯性系的加速度点相对惯性系的加速度p点相对质心的加速度点相对质心的加速度RCp 按切、法向分解按切、法向分解:无滑动滚动:无滑动滚动:p点加速度沿半径方向点加速度沿半径方向ap过过p点转轴惯性力矩等于零点转轴惯性力矩等于零24第24页,本讲稿共26页【例例】两两个个质质量量和和半半径径都都相相同同,但但转转动动惯惯量量不不同同的的柱柱体体,在在斜斜面面上上作作无无滑滑动动滚滚动动,哪哪个个滚滚得得快?快?关于瞬转轴列转动定理重解:关于瞬转轴列转动定理重解:mgfRCp简单多了!简单多了!25第25页,本讲稿共26页五、进动五、进动(旋进旋进,Precession)高高速速自自转转的的物物体体,其其自自转转轴轴绕绕另另一一个个轴轴缓缓慢慢转转动的现象。动的现象。【演示实验演示实验】车轮进动车轮进动M 不不“屈屈服服”于于外外力力矩矩作作用用,稳定对称轴的方向。稳定对称轴的方向。Lmg【思考思考】上述分析严格吗?上述分析严格吗?第26页,本讲稿共26页