《大学微积分》PPT课件.ppt

上传人:wuy****n92 文档编号:77683347 上传时间:2023-03-16 格式:PPT 页数:40 大小:553KB
返回 下载 相关 举报
《大学微积分》PPT课件.ppt_第1页
第1页 / 共40页
《大学微积分》PPT课件.ppt_第2页
第2页 / 共40页
点击查看更多>>
资源描述

《《大学微积分》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《大学微积分》PPT课件.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、6.2 向量及其线性运算向量及其线性运算向量:向量:既有大小又有方向的量既有大小又有方向的量.向量表示:向量表示:模长为模长为1 1的向量的向量.零向量:零向量:模长为模长为0 0的向量的向量.|向量的模:向量的模:向量的大小向量的大小.单位向量:单位向量:或或或或或或一、向量的概念一、向量的概念自由向量:自由向量:不考虑起点位置的向量不考虑起点位置的向量.相等向量:相等向量:大小相等且方向相同的向量大小相等且方向相同的向量.负向量:负向量:大小相等但方向相反的向量大小相等但方向相反的向量.向径:向径:空间直角坐标系中任一点空间直角坐标系中任一点 与原点与原点构成的向量构成的向量.平行:平行:

2、如果两个向量所在的线段平行,则称两向量如果两个向量所在的线段平行,则称两向量平行平行1 加法:加法:(平行四边形法则)(平行四边形法则)特殊地:若特殊地:若分为同向和反向分为同向和反向(平行四边形法则有时也称为三角形法则)(平行四边形法则有时也称为三角形法则)二、向量的加减法向量的加法符合下列运算规律:向量的加法符合下列运算规律:(1 1)交换律:)交换律:(2 2)结合律:)结合律:(3)2 减法减法三、数与向量的乘法三、数与向量的乘法数与向量的乘积符合下列运算规律:数与向量的乘积符合下列运算规律:(1 1)结合律:)结合律:(2 2)分配律:)分配律:两个向量的平行关系两个向量的平行关系按

3、照向量与数的乘积的规定,按照向量与数的乘积的规定,上式表明:一个非零向量除以它的模的结果是上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量一个与原向量同方向的单位向量.证证充分性显然;充分性显然;例例2 2 试用向量方法证明:对角线互相平分的试用向量方法证明:对角线互相平分的四边形必是平行四边形四边形必是平行四边形.证证结论得证结论得证.空间两向量的夹角的概念:空间两向量的夹角的概念:类似地,可定义类似地,可定义向量与一轴向量与一轴或或空间两轴空间两轴的夹角的夹角.特殊地,当两个向量中有一个零向量时,规定特殊地,当两个向量中有一个零向量时,规定它们的夹角可在它们的夹角可在0

4、与与 之间任意取值之间任意取值.四、向量的投影空间一点在轴上的投影空间一点在轴上的投影空间一向量在轴上的投影空间一向量在轴上的投影注:投影的结果是一个数量值,可正可负。注:投影的结果是一个数量值,可正可负。关于向量的关于向量的投影定理(投影定理(1 1)证证定理定理1 1的说明:的说明:投影为正;投影为正;投影为负;投影为负;投影为零;投影为零;(4)相等向量在同一轴上投影相等;相等向量在同一轴上投影相等;关于向量的关于向量的投影定理(投影定理(2 2)(可推广到有限多个)(可推广到有限多个)五、向量的坐标表示五、向量的坐标表示 向向量量在在 轴轴上上的的投投影影 向向量量在在 轴轴上上的的投

5、投影影 向向量量在在 轴轴上上的的投投影影按基本单位向量的按基本单位向量的坐标分解式坐标分解式:在三个坐标轴上的在三个坐标轴上的分向量分向量:向量的向量的坐标坐标:向量的向量的坐标表达式坐标表达式:特殊地:特殊地:向量的加减法、向量与数的乘法运算的坐标表达式向量的加减法、向量与数的乘法运算的坐标表达式解解设设为直线上的点,为直线上的点,由题意知:由题意知:非零向量非零向量 的的方向角方向角:非零向量与三条坐标轴的正向的夹角称为方向角非零向量与三条坐标轴的正向的夹角称为方向角.三、向量的方向角与方向余弦三、向量的方向角与方向余弦由图分析可知由图分析可知向向量量的的方方向向余余弦弦方向余弦通常用来

6、表示向量的方向方向余弦通常用来表示向量的方向.向量模长的坐标表示式向量模长的坐标表示式当当 时,时,向量方向余弦的坐标表示式向量方向余弦的坐标表示式方向余弦的特征方向余弦的特征特殊地:单位向量的方向余弦为特殊地:单位向量的方向余弦为解解所求向量有两个,一个与所求向量有两个,一个与 同向,一个反向同向,一个反向或或空间直角坐标系空间直角坐标系 空间两点间距离公式空间两点间距离公式(注意它与平面直角坐标系的(注意它与平面直角坐标系的区别区别)(轴、面、卦限)(轴、面、卦限)小结向量的概念向量的概念向量的加减法向量的加减法向量与数的乘法向量与数的乘法(注意与标量的区别)(注意与标量的区别)(平行四边

7、形法则)(平行四边形法则)(注意数乘后的方向)(注意数乘后的方向)向量在轴上的投影与投影定理向量在轴上的投影与投影定理.向量在坐标轴上的分向量与向量的坐标向量在坐标轴上的分向量与向量的坐标.向量的模与方向余弦的坐标表示式向量的模与方向余弦的坐标表示式.(注意分向量与向量的坐标的(注意分向量与向量的坐标的区别区别)思考题思考题已知平行四边形已知平行四边形ABCD的对角线的对角线试用试用 表示平行四边形四边上对应的向量表示平行四边形四边上对应的向量.思考题解答思考题解答思考题思考题思考题解答思考题解答对角线的长为对角线的长为 在初等数学中,几何与代数是彼此独立的两个分支;在方法上,它们也基本是互不

8、相关的。解析几何的建立,不仅由于在内容上引入了变量的研究而开创了变量数学,而且在方法上也使几何方法与代数方法结合起来。1637年,笛卡儿发表了方法论及其三个附录,他对解析几何的贡献,就在第三个附录几何学中,他提出了几种由机械运动生成的新曲线。在平面和立体轨迹导论中,费尔马解析地定义了许多新的曲线。在很大程度上,笛卡儿从轨迹开始,然后求它的方程;费尔马则从方程出发,然后来研究轨迹。这正是解析几何基本原则的两个相反的方面,“解析几何(analytical geometry)”的名称是以后才定下来的。阅读材料阅读材料 analytical geometry 这门课程达到现在课本中熟悉的形式,是100

9、多年以后的事。象今天这样使用坐标、横坐标、纵坐标这几个术语,是莱布尼兹于1692年提出的。1733年,年仅18岁的克雷洛出版了关于双重曲率曲线的研究一书,这是最早的一部空间解析几何著作。1748年,欧拉写的无穷分析概要,可以说是符合现代意义的第一部解析几何学教程。1788年,拉格朗日开始研究有向线段的理论。1844年,格拉斯曼提出了多维空间的概念,并引入向量的记号。于是多维解析几何出现了。解析几何在近代的发展,产生了无穷维解析几何和代数几何等一些分支。普通解析几何只不过是代数几何的一部分,而代数几何的发展同抽象代数有着密切的联系。1619年,笛卡尔在多瑙河的诺伊堡军营里,终日沉迷在数学的思考之中:“几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里关键是如何把组成几何图形的点和满足方程的每一组数联系起来,突然,他看见屋顶上一只蜘蛛拉着丝垂下来了,一会儿,蜘蛛 又顺着丝爬上去,在上面左右拉丝。蜘蛛的表演使笛卡尔的思路豁然开朗,于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。阅读材料阅读材料 analytical geometry作业第3页:2,6第9页:3,7,8,9,10,11,13,14

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁