统计软件SPSS方差分析的.ppt

上传人:wuy****n92 文档编号:77652097 上传时间:2023-03-16 格式:PPT 页数:33 大小:85KB
返回 下载 相关 举报
统计软件SPSS方差分析的.ppt_第1页
第1页 / 共33页
统计软件SPSS方差分析的.ppt_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《统计软件SPSS方差分析的.ppt》由会员分享,可在线阅读,更多相关《统计软件SPSS方差分析的.ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第9章 方差分析 介绍介绍w 1、方差分析的概念、方差分析的概念w 2、方差分析的过程、方差分析的过程本章内容9.1 方差分析的概念与方差分析的过程方差分析的概念与方差分析的过程9.2 单因素方差分析单因素方差分析9.3 单因变量多因素方差分析过程单因变量多因素方差分析过程9.4 多因变量线性模型的方差分析多因变量线性模型的方差分析9.5 重复测量设计的方差分析重复测量设计的方差分析9.6 方差成分分析方差成分分析9.7 正交实验设计正交实验设计练习题(对银行数据进行方差分析)练习题(对银行数据进行方差分析)在科学实验中常常要探讨不同实验条件或在科学实验中常常要探讨不同实验条件或处理方法对实验

2、结果的影响。通常是比较处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异不同实验条件下样本均值间的差异方差分析是检验多组样本均值间的差异是方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如否具有统计意义的一种方法。例如n医学界研究几种药物对某种疾病的疗效;医学界研究几种药物对某种疾病的疗效;n农业研究土壤、肥料、日照时间等因素对某农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响种农作物产量的影响n不同饲料对牲畜体重增长的效果等不同饲料对牲畜体重增长的效果等都可以使用方差分析方法去解决都可以使用方差分析方法去解决方差分析基本原理认为不同处理组的均值间的差别

3、基本来源认为不同处理组的均值间的差别基本来源有两个有两个:n(1)随机误差,如测量误差造成的差异或个)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,均值与该组内变量值之偏差平方和的总和表示,记作记作SSw,组内自由度,组内自由度dfwn(2)实验条件,即不同的处理造成的差异,)实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作之偏差平方和表示,记作SSb,组间自由度,组间自由度dfbn总偏差平方和总偏

4、差平方和SSt、SSb、SSw的公式的公式P147方差分析基本原理(续)组内组内SSw、组间组间SSb除以各自的自由度除以各自的自由度(组内组内dfw=n-m,组间,组间dfb=m-1,其中,其中n为样本总为样本总数,数,m为组数为组数),得到其均方,得到其均方MSw和和MSb,一一种情况是处理没有作用,即各组样本均来自种情况是处理没有作用,即各组样本均来自同一总体,同一总体,MSb/MSw1。另一种情况是处理。另一种情况是处理确实有作用,那么,确实有作用,那么,MSbMSw(远远大于远远大于)。MSb/MSw比值构成比值构成F分布,用分布,用F值与其临界值值与其临界值比较,推断各样本是否来自

5、相同的总体比较,推断各样本是否来自相同的总体.方差分析的假设检验零假设零假设H0:m组样本均值都相同,即组样本均值都相同,即1=2=.=m如果经过计算结果组间均方远远大于组内均方如果经过计算结果组间均方远远大于组内均方(MSbMSw),),FF0.05(dfb,dfw),p0.05,拒绝零假设,拒绝零假设,说明样本来自不同的正态总体,说明样本来自不同的正态总体,说明处理造成均值的说明处理造成均值的差异有统计意义差异有统计意义;否则;否则,FCompare Means-One-Way ANOVAnDependent List:weightnFactor:foddern结果只有方差分析表结果只有方

6、差分析表n结果中比较有用的值:结果中比较有用的值:Sig显著性概率值。显著性概率值。n结论:四种饲料对猪体重增加的作用有显著性差异结论:四种饲料对猪体重增加的作用有显著性差异。n零假设零假设H0:组间均值无显著性差异(即四种饲料对猪组间均值无显著性差异(即四种饲料对猪体重增加的平均值无显著性差异);体重增加的平均值无显著性差异);9.2-9.3 单因素方差分析的选择项和例子使用选择项的单因素方差分析:使用选择项的单因素方差分析:nP155 比较四种饲料对猪体重增加的作用比较四种饲料对猪体重增加的作用data09-01nAnalyze-Compare Means-One-Way ANOVAnDe

7、pendent List:weightnFactor:foddernContrasts选项选项:多项式比较(多项式比较(AD与与BC比较和比较和AC与与BD比较)比较)nPost Hoc选项选项:均值多重比较均值多重比较LSD和和Tamhanes T2,一致性子集一致性子集检验检验Duncan(各种方法的使用条件方差齐或不齐)各种方法的使用条件方差齐或不齐)nOptions选项选项:Descriptive描述统计量,描述统计量,Homogeneity-of-variance方差齐次性检验,方差齐次性检验,Means plot均值分布图均值分布图n结果除了方差分析表,还有很多选项相应的结果结果除

8、了方差分析表,还有很多选项相应的结果n结论:四种饲料对猪体重增加的作用有显著性差异,还可得知结论:四种饲料对猪体重增加的作用有显著性差异,还可得知ABCD四种饲料对猪平均体重增加多少(越来越多)四种饲料对猪平均体重增加多少(越来越多)。nP159 同种三叶草被接种上不同的菌种,其含氮量情况同种三叶草被接种上不同的菌种,其含氮量情况data09-02(注意注意Post Hoc各种方法结果的使用条件方差齐或不齐)各种方法结果的使用条件方差齐或不齐).9.3 单因变量多因素方差分析过程(多因素,2)1、单因变量多因素方差分析概述、单因变量多因素方差分析概述2、单因变量多因素方差分析的菜单和选择项、单

9、因变量多因素方差分析的菜单和选择项3、使用系统默认值进行随机区组设计资料的方、使用系统默认值进行随机区组设计资料的方差分析差分析4、22析因实验方差分析实例析因实验方差分析实例5、拉丁方区组设计的方差分析实例、拉丁方区组设计的方差分析实例6、协方差分析实例、协方差分析实例7、多维交互效应方差分析实例、多维交互效应方差分析实例1、概述、概述n是对一个独立变量是否受多个因素或变量影响而进行的方差分析。是对一个独立变量是否受多个因素或变量影响而进行的方差分析。nSPSS调用调用UNIANOVA过程,检验不同水平组合之间因(分析)变量过程,检验不同水平组合之间因(分析)变量均值由于受不同因素影响是否有

10、差异的问题。均值由于受不同因素影响是否有差异的问题。nUNIANOVA过程可以分析每一个因素的作用(主效应),也可以分析过程可以分析每一个因素的作用(主效应),也可以分析因素之间的交互作用(交互效应)。可以进行协方差分析,以及各因因素之间的交互作用(交互效应)。可以进行协方差分析,以及各因素变量与协变量之间的交互作用。素变量与协变量之间的交互作用。nUNIANOVA过程过程要求因变量是从多元正态总体随机采样得来,且总体要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同,也可以通过方差齐次性检验选择均值比较结果。中各单元的方差相同,也可以通过方差齐次性检验选择均值比较结果。n因变量

11、和协变量必须是数值型变量,协变量与因变量彼此不独立。因因变量和协变量必须是数值型变量,协变量与因变量彼此不独立。因素变量是分类变量,可以是数值型和字符型。素变量是分类变量,可以是数值型和字符型。n固定因素变量(固定因素变量(Fixed FactorFixed Factor)是反应处理的因素。随机因素是随机)是反应处理的因素。随机因素是随机设置的因素,是在确定模型时需要考虑会对实验有影响的因素,对实设置的因素,是在确定模型时需要考虑会对实验有影响的因素,对实验结果影响的大小可以通过方差成分分析确定。验结果影响的大小可以通过方差成分分析确定。2 2、关于模型:、关于模型:GLM Univariat

12、eGLM Univariate功能很强,可以建立包括各种主效应、交功能很强,可以建立包括各种主效应、交互效应的模型。必须认真分析因素变量的具体情况,来确定自己的模型,互效应的模型。必须认真分析因素变量的具体情况,来确定自己的模型,否则会产生不可解释的输出结果。否则会产生不可解释的输出结果。9.3.2 单因变量多因素方差分析的菜单和选择项菜单:菜单:Analyze-General Linear Model-Univariate Analyze-General Linear Model-Univariate 选项:选项:n选择分析模型选择分析模型Model:Model:w默认全模型默认全模型Ful

13、l FactorialFull Factorial:包括所有因素变量的主效应、所有协:包括所有因素变量的主效应、所有协变量的主效应、所有因素与因素的交互效应,不包括协变量与其他变量的主效应、所有因素与因素的交互效应,不包括协变量与其他因素的交互效应。因素的交互效应。w自定义模型自定义模型CustomCustom:主效应(:主效应(Main effectsMain effects及其因素变量)、交互及其因素变量)、交互变量(有交互效应维数之分)变量(有交互效应维数之分)w选择分解平方和的方法(默认为选择分解平方和的方法(默认为TYPE IIITYPE III)wInclude Intercept

14、 in modelInclude Intercept in model:系统默认截距包括在回归模型中。:系统默认截距包括在回归模型中。n选择对照方法选择对照方法ContrastsContrastsn选择分布图形选择分布图形PlotsPlotsn选择多重比较分析选择多重比较分析Post HocPost Hocn保存运算结果的选择项保存运算结果的选择项SaveSaven选择输出项选择输出项OptionsOptions9.3.3 使用系统默认值进行随机区组设计资料的方差分析P168 比较不同种系、剂量的雌性大白鼠子宫重量,看比较不同种系、剂量的雌性大白鼠子宫重量,看不同种系、不同剂量对雌性大白鼠子宫

15、重量是否有显著不同种系、不同剂量对雌性大白鼠子宫重量是否有显著性作用性作用data09-03nAnalyze-General Linear Model-Univariate nDependent:wuterinFixed Factor(s):):mouse、etrogennModel选项选项:Custom(Main effect,mouse和和etrogen)n主效应方差分析检验结果主效应方差分析检验结果(截距,主效应,误差截距,主效应,误差Error)n结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(各自主效应,截显著性概率值(各自主效应,截距距-线性回归关系)线性回归关系)n结

16、论:不同种系、不同剂量对雌性大白鼠子宫重量均有有显结论:不同种系、不同剂量对雌性大白鼠子宫重量均有有显著性作用。著性作用。n注意:选择只有主效应,原因是每种组合只有一个观注意:选择只有主效应,原因是每种组合只有一个观测量。如果分析交互作用,无法计算差异的显著性测量。如果分析交互作用,无法计算差异的显著性9.3.4 析因实验方差分析概念多因素析因实验的方差分析:析因实验多因素析因实验的方差分析:析因实验是把各因素的各水平的全部组合排列出是把各因素的各水平的全部组合排列出来,然后按每个条件的组合作一次或多来,然后按每个条件的组合作一次或多次重复的实验,所得的全部数据个数次重复的实验,所得的全部数据

17、个数n=a*b*.*k,其中,其中a,b,.为各因为各因素的水平数,素的水平数,k为每种组合内的重复数。为每种组合内的重复数。析因分析的好处在于对各因素间的交互析因分析的好处在于对各因素间的交互影响项的方差都可以加以析离并检验其影响项的方差都可以加以析离并检验其显著性。显著性。9.3.4 22析因实验方差分析实例两因素、两水平的实验设计。两因素、两水平的实验设计。例子:例子:P171使用两种药物使用两种药物A(0-不用,不用,1-用)和用)和B(0-不用,不用,1-用)治疗缺铁性贫血(用)治疗缺铁性贫血(2*2=4种组合,每种组合有种组合,每种组合有3个病人),看个病人),看A、B、AB的作用

18、的作用data09-04nAnalyze-General Linear Model-Univariate nDependent:redcellnFixed Factors:drugA、drugBn保留全保留全模型选项(不对模型选项(不对Model操作)操作)n选择选择Plot选项:选项:作三个图作三个图drugA、drugB、drugA*drugBn选择选择输出输出Option选项:选选项:选 drugA、drugB、drugA*drugB、Overall进进入入Display Means for框中框中n结果除了方差分析表(结果除了方差分析表((截距、主效应、截距、主效应、交叉效应、交叉效应

19、、误差误差Error),还有很还有很多选项相应的结果多选项相应的结果n结论结论p173:两种药物两种药物A和和B均均对治疗缺铁性贫血有显著疗效,对治疗缺铁性贫血有显著疗效,两种药物两种药物A和和B的协同作用也很显著。的协同作用也很显著。9.3.5 拉丁方区组设计的方差分析实例拉丁方实验设计的特点拉丁方实验设计的特点:有两个以上因素变量有两个以上因素变量,每个因素变量的水平每个因素变量的水平数相等。数相等。例子:例子:P174为了评价六种不同甜菜,选择地块土壤条件相同,将为了评价六种不同甜菜,选择地块土壤条件相同,将六种甜菜(变量六种甜菜(变量variety)种子播种在六行(变量种子播种在六行(

20、变量rep)、六列(变)、六列(变量量Col)的地块上,记录两次收获(变量)的地块上,记录两次收获(变量Harvest)的产量(变量)的产量(变量yield)data09-05(3因素因素6*6拉丁方,拉丁方,n=6*6*272 Cases)实验的假设是:不同地块(行、列)对产量均值无影响,不同种子实验的假设是:不同地块(行、列)对产量均值无影响,不同种子产量均值无影响产量均值无影响nAnalyze-General Linear Model-Univariate nDependent:yieldnFixed Factors:rep、col、varietynModel:只只分析三个主效应分析三个

21、主效应rep、col、variety(Main effects)n主效应方差分析检验结果主效应方差分析检验结果(截距,主效应,误差截距,主效应,误差Error)n结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(各自主效应,不同品种显著性概率值(各自主效应,不同品种的甜菜的甜菜variety 有显著性差异,即平均产量的差异主要是品种不同有显著性差异,即平均产量的差异主要是品种不同造成的,而跟地块无关)造成的,而跟地块无关)9.3.6 协方差分析实例协方差分析是利用线性回归方法消除混杂因素的影响后进行的协方差分析是利用线性回归方法消除混杂因素的影响后进行的方差分析。方差分析。例子:例子

22、:P176 P176 镉作业工人按暴露于镉烟尘的年数大于等于镉作业工人按暴露于镉烟尘的年数大于等于1010年和年和不足不足1010年两组。两组工人的年龄未经控制(人随着年龄的增长,年两组。两组工人的年龄未经控制(人随着年龄的增长,肺活量也会有所下降),测量了每个工人的肺活量。课题研究肺活量也会有所下降),测量了每个工人的肺活量。课题研究暴露于镉粉尘的年数和肺活量的关系暴露于镉粉尘的年数和肺活量的关系(要消除年龄的影响要消除年龄的影响),Data09-06Data09-06,TimeTime接触镉粉尘时间分组(接触镉粉尘时间分组(1 1为为=10=10年,年,2 2为为10General Lin

23、ear Model-Analyze-General Linear Model-Univariate Univariate nDependent:VitalcpnFixed Factors:timenCovariate:AgenOption:Display Means For:time(分分Time显示肺活量均值)显示肺活量均值)Display:Parameter Estimates(肺活量与年龄的线性回肺活量与年龄的线性回归方程,分归方程,分time)n结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(各主效应,年龄显著性概率值(各主效应,年龄Age有显著有显著性差异,性差异,TIM

24、E无显著性差异,即肺活量的差异是由于被试者的年龄差无显著性差异,即肺活量的差异是由于被试者的年龄差异所致,与被试者接触镉粉尘时间的时间是否大于异所致,与被试者接触镉粉尘时间的时间是否大于10年无关)年无关)9.3.7 多维交互效应方差分析实例p178实验数据为教育心理学实验,心理运动测验分数与被试者实验数据为教育心理学实验,心理运动测验分数与被试者必须瞄准的目标大小关系的资料必须瞄准的目标大小关系的资料Data09-07n四个大小不同的目标:四个大小不同的目标:Targetn三部测验设备:三部测验设备:Devicen两种不同明暗程度的照明环境:两种不同明暗程度的照明环境:Lightn432的析

25、因实验设计(的析因实验设计(24个组合单元,每组个组合单元,每组5个个Cases,共,共245120Cases)Analyze-General Linear Model-Univariate nDependent:ScorenFixed Factors:Target、Device、LightnModel:保留全模型选项(不对保留全模型选项(不对Model操作)操作)n选择选择输出输出Option选项:选选项:选Target*Device*Light进入进入Display Means for框中:各种组合均值框中:各种组合均值n选择选择Plot选项:选项:作四个图作四个图Target、Devic

26、e、Light、Target*Device*Lightn结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(各主效应,交互效应,均对显著性概率值(各主效应,交互效应,均对Score有显著性作用)有显著性作用)9.4 多因变量线性模型的方差分析P181概述概述:GLM Multivariate过程提供回归分析和过程提供回归分析和多因变量的方差分析。多因变量方差分析模型多因变量的方差分析。多因变量方差分析模型除包括多个因变量外,还可以包括一个或几个除包括多个因变量外,还可以包括一个或几个因素变量或协变量。因素变量把总体分为几个因素变量或协变量。因素变量把总体分为几个组。使用这个一般线性模型

27、过程,可以检验因组。使用这个一般线性模型过程,可以检验因素变量在因变量的联合分布的各组均值的效应,素变量在因变量的联合分布的各组均值的效应,可以研究因素间的交互效应和单一因素的效应,可以研究因素间的交互效应和单一因素的效应,另外还包括协变量效应和协变量与因素间的交另外还包括协变量效应和协变量与因素间的交互效应。对回归分析,协变量作为自变量(预互效应。对回归分析,协变量作为自变量(预测变量)测变量)GLM Multivariate过程可以检验平衡和不平过程可以检验平衡和不平衡模型。模型中每个单元包括相同数量的观测衡模型。模型中每个单元包括相同数量的观测量为平衡设计。量为平衡设计。实例:数据是对男

28、实例:数据是对男33人、女人、女26人的头部四人的头部四个解剖部位的测量结果,研究男女头部有个解剖部位的测量结果,研究男女头部有无显著性差异。无显著性差异。Data09-08菜单:菜单:Analyze-General Linear Model-MultivariatenDependent:Basilar、length、postorb、zygomanFixed Factors:SexnModel:保留全模型选项(不对保留全模型选项(不对Model操作)操作)nOption:Descriptive Statisticsn结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(不同性别显著性概率

29、值(不同性别的头部四个解剖部位没有显著性差异)的头部四个解剖部位没有显著性差异)9.5 重复测量设计的方差分析概述概述P187:P187:重复测量设计方差分析的样本必须包括同质重复测量设计方差分析的样本必须包括同质的实验单位或进行多次重复测量的实验。的实验单位或进行多次重复测量的实验。GLMGLM重复测量属于高级分析过程,是对同一因变量进行重复测量属于高级分析过程,是对同一因变量进行重复测量,可以是同一条件下进行的重复测度,目的重复测量,可以是同一条件下进行的重复测度,目的在于研究各种处理之间是否存在显著性差异的同时,在于研究各种处理之间是否存在显著性差异的同时,研究被试着之间的差异;也可以是

30、不同条件下的重复研究被试着之间的差异;也可以是不同条件下的重复测度,目的在于研究各种处理间是否存在显著性差异测度,目的在于研究各种处理间是否存在显著性差异的同时,研究形成重复测量条件间的差异以及这些条的同时,研究形成重复测量条件间的差异以及这些条件与处理间的交互效应。件与处理间的交互效应。重复测量设计方差分析的数据文件结构:若干次重复重复测量设计方差分析的数据文件结构:若干次重复测量结果作为不同因变量出现在数据文件中。测量结果作为不同因变量出现在数据文件中。9.5 重复测量方差分析实例1P188实例实例1-Data09-09:设置了三个级别的视觉刺激:设置了三个级别的视觉刺激作为作为处理因素变

31、量处理因素变量vsno(视觉刺激等级视觉刺激等级1、2、3),4位位被试者均接受三个级别的视觉刺激,并在同样条件下测被试者均接受三个级别的视觉刺激,并在同样条件下测试三次试三次(time1,time2,time3)。H0:三个级别的视觉刺:三个级别的视觉刺激之间(被试者内)无显著性差异。激之间(被试者内)无显著性差异。菜单:菜单:Analyze-General Linear Model-Repeated MeasurenWithin-Subject Factor Name:timenNuber of Levels:3nDefine:nWithin-Subjects Variables time

32、:time1,time2,time3nBetween-Subject Factor:vsnon结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(三次测量之间没显著性概率值(三次测量之间没有显著性差异,有显著性差异,4位被试者之间对每种相同视觉刺激的反映位被试者之间对每种相同视觉刺激的反映也没有显著性差异,而对不同的视觉刺激等级有显著性差异)也没有显著性差异,而对不同的视觉刺激等级有显著性差异)9.5.4 重复测量方差分析实例2P191实例实例-Data09-10a:研究四种药物对某生化指:研究四种药物对某生化指标的作用(标的作用(med1,med2,med3,med4),5位被位被试

33、者参与实验,零假设试者参与实验,零假设H0:四种药物对某生化指标作:四种药物对某生化指标作用之间(被试者内)无显著性差异。用之间(被试者内)无显著性差异。菜单:菜单:Analyze-General Linear Model-Repeated MeasurenWithin-Subject Factor Name:mednNuber of Levels:4nDefine:nWithin-Subjects Variables med:med1-med4nOption:Display Means for:Med Display:Descriptive Statisticsn结果中比较有用的值:结果中比

34、较有用的值:Sig显著性概率值(四种药物对某显著性概率值(四种药物对某生化指标作用之间有显著性差异,而生化指标作用之间有显著性差异,而5位被试者之间对每位被试者之间对每种相同药物的反映也有显著性差异)种相同药物的反映也有显著性差异)9.5.5 关于趋势分析P194概念:当重复测量的条件是某些顺序变量时,可以分析重复测量的因概念:当重复测量的条件是某些顺序变量时,可以分析重复测量的因变量随顺序变量变化的趋势。变量随顺序变量变化的趋势。实例实例-Data09-11:选择:选择16名实验对象名实验对象(no),使用两种方法,使用两种方法(group)锻炼他锻炼他们的记忆力。训练一段时间后,每隔一天测

35、试一次记忆情况,共测试们的记忆力。训练一段时间后,每隔一天测试一次记忆情况,共测试5次。次。每次测试对每个参与实验的人员均按一定的法则打分每次测试对每个参与实验的人员均按一定的法则打分(day1-day5)。这是一。这是一个组内因素、一个组间因素的重复测量设计的例题。因为组内因素是与时间个组内因素、一个组间因素的重复测量设计的例题。因为组内因素是与时间有关的变量,因此不但可以分析比较两种训练记忆的方法哪个更有效,还可有关的变量,因此不但可以分析比较两种训练记忆的方法哪个更有效,还可以得到随时间的推移,记忆分数随时间下降的数学模型(线性关系以得到随时间的推移,记忆分数随时间下降的数学模型(线性关

36、系Linear、二次关系二次关系Quadratic、三次关系、三次关系Cubic)。)。菜单:菜单:Analyze-General Linear Model-Repeated MeasurenWithin-Subject Factor Name:days(Nuber of Levels:5)nDefine:nWithin-Subjects Variables days:day1day5nBetween-Subject Factor:groupnModel:Main effects(days,Group)nPlots:Days*GroupnOption:Display Means for:Day

37、s,group,overall Display:Descriptive Statistics和和Estimate of effect size n结果中比较有用的值:结果中比较有用的值:Sig显著性概率值(多元、组内、趋势分析)和趋势显著性概率值(多元、组内、趋势分析)和趋势图(图(Days*group的的Plot图)图)9.6 方差成分分析概述概述P198:是对混合效应模型中各随机效应对是对混合效应模型中各随机效应对因变量变异的贡献进行分析。因变量变异的贡献进行分析。菜单:菜单:Analyze-General Linear Model-Variance Componentsn定义因变量和随机

38、因素定义因变量和随机因素n选分析模型选分析模型Model:Full Model或或Customn选分析方法选分析方法Option:四选一:四选一wMINQUE正态最小二次无偏估计,默认方法正态最小二次无偏估计,默认方法 wANOVA(Analysis of Variance)wMaximum likelihood(ML)最大似然法)最大似然法wRestricted maximum likelihood(REML)有限最大)有限最大似然法似然法9.6.2 方差成分分析实例p200实例实例Data09-07:教育心理学实验,心理运动测验分数与:教育心理学实验,心理运动测验分数与被试者必须瞄准的目标

39、大小关系的资料被试者必须瞄准的目标大小关系的资料n四个大小不同的目标:四个大小不同的目标:Targetn三部测验设备:三部测验设备:Devicen两种不同明暗程度的照明环境:两种不同明暗程度的照明环境:Lightn432的析因实验设计(的析因实验设计(24个组合单元,每组个组合单元,每组5个个Cases,共,共120Cases)菜单:菜单:Analyze-General Linear Model-Variance ComponentsnDependent:ScorenFixed Factors:Target、DevicenRandom Factor:LightnModel:保留全模型选项(不对

40、保留全模型选项(不对Model操作)操作)nOption:Method(ANOVA)、)、Sum of Square(type III)、)、Display(Sum of Square)n结果中比较有用的值:方差成分估计表(结果中比较有用的值:方差成分估计表(Variance Estimates中的中的Estimates,看其看其大小,说明方差最大来源与亮度、目标、设备的交互大小,说明方差最大来源与亮度、目标、设备的交互效应。亮度因素是不可忽视的,亮度应该在测试中作为测试条件考虑)效应。亮度因素是不可忽视的,亮度应该在测试中作为测试条件考虑)9.7 正交实验设计功能功能203:进行实验之前,要

41、进行实验设计,以进行实验之前,要进行实验设计,以保证用最少的人力物力和时间取得好的实验效保证用最少的人力物力和时间取得好的实验效果。果。菜单:菜单:Data-Orthogonal Design-Generate生成正交主效应设计(不属于生成正交主效应设计(不属于typical安装)安装)实例实例P205:要求生成:要求生成4因素因素3水平水平9次实验的次实验的正交实验设计表正交实验设计表练习题(对练习题(对银行数据进行方差分析)银行数据进行方差分析)提提示:如果单因素只有两个水平的字符变量,请用第八章的示:如果单因素只有两个水平的字符变量,请用第八章的T T检验)检验)1.T检验)检验)2.T

42、检验或检验或9.2单因素方差分析)单因素方差分析)3.不同工种的收入是否不同?不同工种的收入是否不同?(9.2单因素方差分析)单因素方差分析)4.不同性别和工种的收入是否不同?不同性别和工种的收入是否不同?(9.3单因变量多因素方差分单因变量多因素方差分析)析)5.是否少数民族和工种的收入是否不同?是否少数民族和工种的收入是否不同?(9.3单因变量多因素方单因变量多因素方差分析)差分析)6.不同工种的收入是否不同(消除是否少数民族的影响不同工种的收入是否不同(消除是否少数民族的影响)?)?(9.3.6 协方差分析)协方差分析)7.不同工种的收入是否不同(消除性别的影响不同工种的收入是否不同(消除性别的影响-性别要重新编码成性别要重新编码成数值数值)?)?(9.3.6 协方差分析)协方差分析)8.不同性别的起始工资和现在工资是否不同(不同性别的起始工资和现在工资是否不同(9.5 重复测量设计重复测量设计的方差分析)的方差分析)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁