《多因素方差分析的SPSS操作.ppt》由会员分享,可在线阅读,更多相关《多因素方差分析的SPSS操作.ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第6 6章章 多因素方差分析多因素方差分析6.16.1两因素被试间方差分析两因素被试间方差分析6.26.2三因素被试内方差分析三因素被试内方差分析6.36.3多因素混合实验设计多因素混合实验设计单因素方差分析单因素方差分析vv这种设计只包含一个因素,该因素有两个水平或以这种设计只包含一个因素,该因素有两个水平或以这种设计只包含一个因素,该因素有两个水平或以这种设计只包含一个因素,该因素有两个水平或以上水平,单因素设计有多种形式。上水平,单因素设计有多种形式。上水平,单因素设计有多种形式。上水平,单因素设计有多种形式。vv单因素被试间方差分析单因素被试间方差分析单因素被试间方差分析单因素被试间
2、方差分析 AnalyzeCompareAnalyzeCompareAnalyzeCompareAnalyzeCompare Mean One-Way ANOVA.Mean One-Way ANOVA.Mean One-Way ANOVA.Mean One-Way ANOVA.vv单因素方差分析检验因变量在单一自变量不同水平单因素方差分析检验因变量在单一自变量不同水平单因素方差分析检验因变量在单一自变量不同水平单因素方差分析检验因变量在单一自变量不同水平上的差异,自变量被划分为两个以上的水平,被试上的差异,自变量被划分为两个以上的水平,被试上的差异,自变量被划分为两个以上的水平,被试上的差异,自
3、变量被划分为两个以上的水平,被试只接受一种处理。如果不同水平之间的差异显著,只接受一种处理。如果不同水平之间的差异显著,只接受一种处理。如果不同水平之间的差异显著,只接受一种处理。如果不同水平之间的差异显著,我们可以推论因变量的变化由自变量引起。我们可以推论因变量的变化由自变量引起。我们可以推论因变量的变化由自变量引起。我们可以推论因变量的变化由自变量引起。vv单因素被试内方差分析单因素被试内方差分析单因素被试内方差分析单因素被试内方差分析 AnalyzeGeneralAnalyzeGeneralAnalyzeGeneralAnalyzeGeneral Linear Linear Linear
4、 Linear ModelRepeatedModelRepeatedModelRepeatedModelRepeated measures.measures.measures.measures.vv如果被试同时接受不同水平的处理,则需要重复测如果被试同时接受不同水平的处理,则需要重复测如果被试同时接受不同水平的处理,则需要重复测如果被试同时接受不同水平的处理,则需要重复测量形成几个彼此不独立的变量,因此需要调用量形成几个彼此不独立的变量,因此需要调用量形成几个彼此不独立的变量,因此需要调用量形成几个彼此不独立的变量,因此需要调用GLMGLMGLMGLM命命命命名对因变量进行重复测量方差。名对因
5、变量进行重复测量方差。名对因变量进行重复测量方差。名对因变量进行重复测量方差。多因素方差分析多因素方差分析vv多因素被试间方差分析(多因素完全随机实验设计)多因素被试间方差分析(多因素完全随机实验设计)多因素被试间方差分析(多因素完全随机实验设计)多因素被试间方差分析(多因素完全随机实验设计)AnalyzeGeneralAnalyzeGeneralAnalyzeGeneralAnalyzeGeneral Linear Linear Linear Linear ModelUnivariateModelUnivariateModelUnivariateModelUnivariate 这种设计的特点
6、是,研究包含两个或以上因素,并这种设计的特点是,研究包含两个或以上因素,并这种设计的特点是,研究包含两个或以上因素,并这种设计的特点是,研究包含两个或以上因素,并且均为被试间变量,产生不同的水平结合,被试随且均为被试间变量,产生不同的水平结合,被试随且均为被试间变量,产生不同的水平结合,被试随且均为被试间变量,产生不同的水平结合,被试随机地分配到各水平结合中,接受实验处理。机地分配到各水平结合中,接受实验处理。机地分配到各水平结合中,接受实验处理。机地分配到各水平结合中,接受实验处理。vv多因素被试内方差分析(重复测量设计)多因素被试内方差分析(重复测量设计)多因素被试内方差分析(重复测量设计
7、)多因素被试内方差分析(重复测量设计)AnalyzeGeneralAnalyzeGeneralAnalyzeGeneralAnalyzeGeneral Linear Linear Linear Linear ModelRepeatedModelRepeatedModelRepeatedModelRepeated measures.measures.measures.measures.研究包含两个或以上因素,并且均为被试内变量,研究包含两个或以上因素,并且均为被试内变量,研究包含两个或以上因素,并且均为被试内变量,研究包含两个或以上因素,并且均为被试内变量,每名被试都要接受变量所有水平的实验处理
8、。每名被试都要接受变量所有水平的实验处理。每名被试都要接受变量所有水平的实验处理。每名被试都要接受变量所有水平的实验处理。vv 例例6.1 6.1 研究不同的教学方法研究不同的教学方法A A(包含(包含 a1a1集集中识字,中识字,a2a2分散识字),和不同的教学态度分散识字),和不同的教学态度B B(包含(包含 b1b1严肃型,严肃型,b2b2轻松型)。将轻松型)。将2020名被名被试随机分成四组,每组试随机分成四组,每组5 5人,每组接受一种实人,每组接受一种实验处理。试分析两种因素对儿童识字量的差验处理。试分析两种因素对儿童识字量的差异。异。【解题思路】vv两因素完全随机实验设计两因素完
9、全随机实验设计(2*2(2*2被试间实验设计被试间实验设计)vv自变量:自变量:vv因变量:因变量:vv主效应:主效应:vv交互效应:交互效应:教学方法教学方法教学方法教学方法 教学态度教学态度教学态度教学态度儿童识字量儿童识字量儿童识字量儿童识字量不同教学方法产生的儿童识字量均值是不同教学方法产生的儿童识字量均值是不同教学方法产生的儿童识字量均值是不同教学方法产生的儿童识字量均值是否存在显著差异。不同教学态度产生的否存在显著差异。不同教学态度产生的否存在显著差异。不同教学态度产生的否存在显著差异。不同教学态度产生的儿童识字量均值之间是否存在显著差异。儿童识字量均值之间是否存在显著差异。儿童识
10、字量均值之间是否存在显著差异。儿童识字量均值之间是否存在显著差异。意味着一个自变量对于因变量的作用受意味着一个自变量对于因变量的作用受意味着一个自变量对于因变量的作用受意味着一个自变量对于因变量的作用受到另一个自变量的影响。教学方法对识到另一个自变量的影响。教学方法对识到另一个自变量的影响。教学方法对识到另一个自变量的影响。教学方法对识字量的影响,受到不同教学态度的影响。字量的影响,受到不同教学态度的影响。字量的影响,受到不同教学态度的影响。字量的影响,受到不同教学态度的影响。教学态度对识字量的影响,受到不同教教学态度对识字量的影响,受到不同教教学态度对识字量的影响,受到不同教教学态度对识字量
11、的影响,受到不同教学方法的影响。学方法的影响。学方法的影响。学方法的影响。vv步骤一:定义变量步骤一:定义变量vv例题中教学方法例题中教学方法A A和和 教学态度教学态度B B均为被试间均为被试间因素,并且四个水平因素,并且四个水平都是随机分派确定,都是随机分派确定,所以四组需纵向排在所以四组需纵向排在一列中。一列中。1-51-5行为行为A1B1A1B1 6-10 6-10行为行为A1B2A1B2 11-15 11-15行为行为A2B1A2B1 16-20 16-20行为行为A2B2A2B2两因素被试间方差分析两因素被试间方差分析SPSSSPSS操作操作vv步骤二:正态检验步骤二:正态检验vv
12、AnalyzeDescriptionAnalyzeDescriptionAnalyzeDescriptionAnalyzeDescription StatisticsExploreStatisticsExploreStatisticsExploreStatisticsExplorevv检验每个水平结合下数据的是否为正态分布。检验每个水平结合下数据的是否为正态分布。vv由于由于ExploreExplore的默认功能是对因素的主效应进的默认功能是对因素的主效应进行检验,并不是对每个水平结合的数据进行行检验,并不是对每个水平结合的数据进行正态检验,因此需要使用句法编辑命令进行正态检验,因此需要使用句
13、法编辑命令进行相应检验。相应检验。vv单击单击pastepaste按钮,将操作命令粘贴至句法编辑窗口按钮,将操作命令粘贴至句法编辑窗口(syntax editor)(syntax editor),在,在A A、B B两因素之间加入两因素之间加入BYBY。vv表一给出了各水平结合下数据的正态分布检表一给出了各水平结合下数据的正态分布检验,通过验,通过S-WS-W方法,得出方法,得出p0.05p0.05,接受虚无假,接受虚无假设,因此数据均服从正态分布。设,因此数据均服从正态分布。vv步骤三:将自变量、因变量选入对话框步骤三:将自变量、因变量选入对话框AnalyzeGeneralAnalyzeGe
14、neralAnalyzeGeneralAnalyzeGeneral Linear Linear Linear Linear ModelUnivariateModelUnivariateModelUnivariateModelUnivariatevv步骤四:选择分析模型步骤四:选择分析模型vvUnivariateUnivariate Model Model按钮按钮单击单击单击单击ModelModelModelModel按钮,打开子对话框,选择默认的模型按钮,打开子对话框,选择默认的模型按钮,打开子对话框,选择默认的模型按钮,打开子对话框,选择默认的模型Full Full Full Full fa
15、ctorialfactorialfactorialfactorial,表示方差分析的模型包括所有因素的主效,表示方差分析的模型包括所有因素的主效,表示方差分析的模型包括所有因素的主效,表示方差分析的模型包括所有因素的主效应,也包括因素之间的交互效应。应,也包括因素之间的交互效应。应,也包括因素之间的交互效应。应,也包括因素之间的交互效应。步骤五:选择分布图形步骤五:选择分布图形UnivariateUnivariate plot plot按钮按钮vv在两因素方差分析时,在两因素方差分析时,在两因素方差分析时,在两因素方差分析时,选择选择选择选择A A A A变量为横轴变量变量为横轴变量变量为横轴
16、变量变量为横轴变量(HorizantalHorizantalHorizantalHorizantal Axis),Axis),Axis),Axis),选择选择选择选择B B B B变量为分线变量变量为分线变量变量为分线变量变量为分线变量(Separate lines),(Separate lines),(Separate lines),(Separate lines),单单单单击击击击addaddaddadd,即显示两因素,即显示两因素,即显示两因素,即显示两因素变量的交互作用,变量的交互作用,变量的交互作用,变量的交互作用,A*BA*BA*BA*B。vv或者将或者将或者将或者将B B B B
17、选为横轴变量,选为横轴变量,选为横轴变量,选为横轴变量,将将将将A A A A选为分线变量,同选为分线变量,同选为分线变量,同选为分线变量,同样可以显示两因素的样可以显示两因素的样可以显示两因素的样可以显示两因素的交互效应,交互效应,交互效应,交互效应,B*A.B*A.B*A.B*A.vv步骤六:事后多重比较设定步骤六:事后多重比较设定vvUnivariateUnivariate Post Hoc Post Hoc由于此例中两个由于此例中两个因素因素A A、B B都只有都只有两个水平,因此两个水平,因此如果主效应显著,如果主效应显著,则表明因素两水则表明因素两水平之间存在显著平之间存在显著性差
18、异,事后多性差异,事后多重可以省略。重可以省略。vv步骤七:方差齐性检验选择步骤七:方差齐性检验选择vvUnivariateOptionUnivariateOption到底什么情况下需要进行多重比较?到底什么情况下需要进行多重比较?vv通过方差得出因素的主效应显著时需进行事通过方差得出因素的主效应显著时需进行事后多重比较后多重比较(因素水平数目因素水平数目2),即直接比较,即直接比较同一因素内多个水平之间的均值差异。同一因素内多个水平之间的均值差异。vv但实际研究中如果主效应和交互效应都达到但实际研究中如果主效应和交互效应都达到显著,研究者更关心在多因素交互作用下,显著,研究者更关心在多因素交
19、互作用下,因变量有什么影响。因变量有什么影响。vv因此交互效应显著时,通常需要进行简单效因此交互效应显著时,通常需要进行简单效应检验。应检验。简单效应检验简单效应检验vv所谓简单效应是指,一个因素的水平在另一个因所谓简单效应是指,一个因素的水平在另一个因素的某个水平上的变异。素的某个水平上的变异。vv例如教学方法例如教学方法A A与教学态度与教学态度B B之间存在显著的交互之间存在显著的交互作用,研究者可以检验在作用,研究者可以检验在B1B1水平上,水平上,A1A1、A2A2之间之间的差异,即可称为的差异,即可称为A A在在B1B1水平上的简单效应水平上的简单效应。vv以及在以及在B2B2水平
20、上水平上A1A1、A2A2之间的差异,即可称之为之间的差异,即可称之为A A在在B2B2水平上的简单效应水平上的简单效应。vv简单效应检验,实际上是把其中一个自变量固定简单效应检验,实际上是把其中一个自变量固定在某一个特定的水平上,考察另一个自变量对因在某一个特定的水平上,考察另一个自变量对因变量的影响。究竟将哪个自变量固定,视研究者变量的影响。究竟将哪个自变量固定,视研究者兴趣而定。兴趣而定。当然研究者也可以研究在当然研究者也可以研究在A1A1水平上,水平上,B1B1、B2B2之间之间的差异,即可称之为的差异,即可称之为B B在在A1A1水平上的简单效应水平上的简单效应。以及在以及在A2A2
21、水平上水平上B1B1、B2B2之间的差异。即可称之为之间的差异。即可称之为B B在在A2A2水平上的简单效应水平上的简单效应。vv步骤八:简单效应检验步骤八:简单效应检验vv单击单击FileFile主菜单主菜单 New SyntaxNew Syntax命令项,命令项,vv编辑句法命令后,单击编辑句法命令后,单击Run AllRun All命令,运行。命令,运行。要求程序给出每个水平结合要求程序给出每个水平结合要求程序给出每个水平结合要求程序给出每个水平结合的平均数和标准差(如不需的平均数和标准差(如不需的平均数和标准差(如不需的平均数和标准差(如不需要,可以省略)要,可以省略)要,可以省略)要
22、,可以省略)MANOVAMANOVAMANOVAMANOVA是唯一具有简单是唯一具有简单是唯一具有简单是唯一具有简单效应检验功能的命令效应检验功能的命令效应检验功能的命令效应检验功能的命令负责完成负责完成负责完成负责完成B B B B在在在在A1A1A1A1、A2A2A2A2两个水两个水两个水两个水平上的简单效应。平上的简单效应。平上的简单效应。平上的简单效应。vv表一给出了各水平结合下数据的正态分布检表一给出了各水平结合下数据的正态分布检验,通过验,通过S-WS-W方法,得出方法,得出p0.05p0.05,接受虚无假,接受虚无假设,因此数据均服从正态分布。设,因此数据均服从正态分布。vv表二
23、为方差齐性检验结果表二为方差齐性检验结果,由于由于p=0.0360.05,p=0.0360.05,F(1,16)=0.357,p=0.5590.05。vv教学态度教学态度B B的主效应达到显著的主效应达到显著F(1,16)=53.392,p=0.0000.001F(1,16)=53.392,p=0.0000.001。vv教学方法教学方法A A和教学态度和教学态度B B的交互效应达到显著,的交互效应达到显著,F(1,16)=11.88,p=0.0030.01F(1,16)=11.88,p=0.0030.01。vv表四为交互作用显著时,简单效应检验结果。表四为交互作用显著时,简单效应检验结果。表四
24、为交互作用显著时,简单效应检验结果。表四为交互作用显著时,简单效应检验结果。vvB B B B在在在在A1A1A1A1水平上的简单效应显著,水平上的简单效应显著,水平上的简单效应显著,水平上的简单效应显著,p=0.0000.001p=0.0000.001p=0.0000.001p=0.0000.001。vvB B B B在在在在A2A2A2A2水平上的简单效应显著,水平上的简单效应显著,水平上的简单效应显著,水平上的简单效应显著,p=0.0130.05p=0.0130.05p=0.0130.05p=0.0130.05,p=0.3330.05。vvA A在在B2B2水平上的简单效应水平上的简单效
25、应不不显著显著,p=0.1750.05,p=0.1750.05。vv结果表明,教学方法结果表明,教学方法A A对识字量的影响没有受到对识字量的影响没有受到不同教学态度不同教学态度(严肃严肃B1B1、轻松、轻松B2)B2)的影响。的影响。第第6 6章章 多因素方差分析多因素方差分析6.16.1两因素被试间方差分析两因素被试间方差分析6.26.2三因素被试内方差分析三因素被试内方差分析6.36.3多因素混合实验设计多因素混合实验设计被试内实验设计被试内实验设计vv被试内实验设计,每名被试都要参加所有的被试内实验设计,每名被试都要参加所有的水平的实验处理。被试内实验设计又称为重水平的实验处理。被试内
26、实验设计又称为重复测量设计,被试内设计中的因素称为被试复测量设计,被试内设计中的因素称为被试内因素或组内因素。内因素或组内因素。vv优点:节省被试人数;避免被试间个体差异优点:节省被试人数;避免被试间个体差异而导致的误差。而导致的误差。vv缺点:被试重复接受所有实验处理,可能存缺点:被试重复接受所有实验处理,可能存在练习和疲劳效应。在练习和疲劳效应。vv根据设计中所包含因素数目是一个还是多个,根据设计中所包含因素数目是一个还是多个,被试内实验设计分为单因素被试内和多因素被试内实验设计分为单因素被试内和多因素被试内设计。被试内设计。vv【例例6.26.2】以下是多因素重复实验设计的方差以下是多因
27、素重复实验设计的方差分析的一个虚拟表格,请对数据进行方差分析。分析的一个虚拟表格,请对数据进行方差分析。其中,其中,A,B,CA,B,C分别为自变量,分别为自变量,S S为被试编号。为被试编号。该研究有多少被试参与研究?该研究有多少被试参与研究?该研究中有多少个因素?该研究中有多少个因素?共有几个水平结合?共有几个水平结合?可称为可称为 *被试内实验设计被试内实验设计【练习练习】作业作业4 44 4名名3 3个个8 8个个2*2*22*2*2【解题思路解题思路】vv步骤一:定义变量步骤一:定义变量vv例题中三因素例题中三因素A A、B B、C C均为被试内因素。每个均为被试内因素。每个因素均有
28、两个水平,共因素均有两个水平,共有有8 8种水平结合。种水平结合。1-41-4行为行为A1B1C1A1B1C1 5-8 5-8行为行为A1B1C2A1B1C2 9-12 9-12行为行为A1B2C1A1B2C1 13-16 13-16行为行为A1B2C2A1B2C2三因素被试内方差分析三因素被试内方差分析SPSSSPSS操作操作vv步骤一:定义变量步骤一:定义变量vv例题中三因素例题中三因素A A、B B、C C均为被试内因素。均为被试内因素。每个因素均有两个水平,共有每个因素均有两个水平,共有8 8种水平结种水平结合。因此需要定义合。因此需要定义8 8个变量。个变量。三因素被试内方差分析三因
29、素被试内方差分析SPSSSPSS操作操作vv步骤二:正态检验步骤二:正态检验vvAnalyzeDescriptionAnalyzeDescriptionAnalyzeDescriptionAnalyzeDescription StatisticsExploreStatisticsExploreStatisticsExploreStatisticsExplorevv检验每个水平结合下数据的是否为正态分布。检验每个水平结合下数据的是否为正态分布。vv单击单击pastepaste按钮,将操作命令粘贴至句法编辑窗口按钮,将操作命令粘贴至句法编辑窗口(syntax editor)(syntax edit
30、or),在,在A A、B B、C C三因素之间加入三因素之间加入BYBY。vv表一给出了各水平结合下数据的正态分布检表一给出了各水平结合下数据的正态分布检验,通过验,通过S-WS-W方法,得出方法,得出p0.05p0.05,接受虚无假,接受虚无假设,因此数据均服从正态分布。设,因此数据均服从正态分布。vv步骤三:定义被试内因素步骤三:定义被试内因素AnalyzeGeneralAnalyzeGeneralAnalyzeGeneralAnalyzeGeneral Linear Linear Linear Linear ModelRepeatedModelRepeatedModelRepeatedM
31、odelRepeated Measures Measures Measures Measuresvv将因素将因素A A、B B、C C选入对话框,并且定义水平数目,选入对话框,并且定义水平数目,单击单击AddAdd完成。完成。v单击单击DefineDefine设置有关参数:将自变量的设置有关参数:将自变量的8 8个个水平结合置入水平结合置入“Within-Subjects Within-Subjects Variables”Variables”列表框中列表框中vv步骤四:事后多重比较设定步骤四:事后多重比较设定Repeated Measures OptionsRepeated Measures
32、 Options将将将将A A A A、B B B B、C C C C三个变三个变三个变三个变量从左侧移入右侧量从左侧移入右侧量从左侧移入右侧量从左侧移入右侧Display Means Display Means Display Means Display Means ForForForFor框中,选中框中,选中框中,选中框中,选中compare main compare main compare main compare main effects,effects,effects,effects,选择一种选择一种选择一种选择一种事后比较方法。事后比较方法。事后比较方法。事后比较方法。由于由于由
33、于由于post hocpost hocpost hocpost hoc只适只适只适只适用于被试间因素,用于被试间因素,用于被试间因素,用于被试间因素,不适用于被试内因不适用于被试内因不适用于被试内因不适用于被试内因素的事后多重比较。素的事后多重比较。素的事后多重比较。素的事后多重比较。结果分析结果分析vv表一:正态检验表一:正态检验vv表二:描述统计表二:描述统计vv表三:多元方差分析结果表三:多元方差分析结果vv表四:球形检验表四:球形检验vv表五:一元方差分析结果表五:一元方差分析结果vv表六:被试间因素表六:被试间因素vv表七:事后多重比较表七:事后多重比较多元方差分析多元方差分析(mu
34、ltivariate test)(multivariate test)vv当研究中,因变量不只一个时,需使用多元当研究中,因变量不只一个时,需使用多元方差分析进行统计检验。方差分析进行统计检验。vv多元方差分析是对一元方差分析的扩展,多多元方差分析是对一元方差分析的扩展,多元方差分析不仅需要检验自变量的不同水平元方差分析不仅需要检验自变量的不同水平上,因变量的均值是否存在差异,而且需要上,因变量的均值是否存在差异,而且需要检验各因变量之间的均值是否存在差异。检验各因变量之间的均值是否存在差异。多元方差分析多元方差分析(multivariate test)(multivariate test)v
35、多元方差分析表列出了各种因素主效应和交互效应多元方差分析表列出了各种因素主效应和交互效应检验结果,每种检验结果都有四种方法,其中:检验结果,每种检验结果都有四种方法,其中:vPillaisPillais Trace Trace值为正值,结果越大代表因素效应值为正值,结果越大代表因素效应对模型的贡献越大对模型的贡献越大vWilksWilks Lambda Lambda的取值范围为的取值范围为0 0到到1 1,结果越大代表,结果越大代表因素效应对模型的贡献越大因素效应对模型的贡献越大vHotellingsHotellings Trace Trace结果越小代表因素效应对模型结果越小代表因素效应对模
36、型的贡献越大的贡献越大vRoys Largest RootRoys Largest Root结果越大代表因素效应对模型结果越大代表因素效应对模型的贡献越大。的贡献越大。【小提示小提示】四种方法需要综合比较。当四种方法需要综合比较。当PillaisPillais TraceTrace与与HotellingsHotellings Trace Trace基本相等时,因素效应基本相等时,因素效应对模型的贡献也不大,即使两者显著性水平对模型的贡献也不大,即使两者显著性水平p0.05p0.05p=0.3190.05p=0.3190.05p=0.3190.05在在在在A2B2A2B2A2B2A2B2水平上水平上水平上水平上C C C C的简单简单效应显著的简单简单效应显著的简单简单效应显著的简单简单效应显著,p=0.0020.01,p=0.0020.01,p=0.0020.01,p=0.0020.01vv在在A2B2A2B2水平上水平上C C的简单简单效应显著的简单简单效应显著,p=0.0020.01,p=0.0020.01。