《四计量经济学联立方程模型的单方程估计方法.pptx》由会员分享,可在线阅读,更多相关《四计量经济学联立方程模型的单方程估计方法.pptx(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、狭义的工具变量法一、狭义的工具变量法(IVIV,Instrumental Instrumental VariablesVariables)第1页/共52页方法思路方法思路“狭义的工具变量法”与“广义的工具变量法”解决结构方程中与随机误差项相关的内生解释变量问题。方法原理与单方程模型的IVIV方法相同。模型系统中提供了可供选择的工具变量,使得IVIV方法的应用成为可能。第2页/共52页工具变量的选取工具变量的选取 对于联立方程模型的每一个结构方程,例如第1个方程,可以写成如下形式:内生解释变量(g1-1)个,先决解释变量k1个。如果方程是恰好识别的,有(g1-1)=(k-k1)。可以选择(k
2、-k1)个方程没有包含的先决变量作为(g1-1)个内生解释变量的工具变量。第3页/共52页 IV IV参数估计量参数估计量 方程的矩阵表示为 选择方程中没有包含的先决变量X X0 0*作为包含的内生解释变量Y Y0 0的工具变量,得到参数估计量为:第4页/共52页讨论讨论该估计量与该估计量与OLSOLS估计量的区别是什么?估计量的区别是什么?该估计量具有什么统计特性?该估计量具有什么统计特性?(k-kk-k1 1)工具变量与()工具变量与(g g1 1-1-1)个内生解释变量)个内生解释变量的对应关系是否影响参数估计结果?为什么?的对应关系是否影响参数估计结果?为什么?IVIV是否利用了模型系
3、统中方程之间相关性信息是否利用了模型系统中方程之间相关性信息?对于过度识别的方程,可否应用对于过度识别的方程,可否应用IV IV?为什么?为什么?对于过度识别的方程,可否应用对于过度识别的方程,可否应用GMM GMM?为什么?为什么?第5页/共52页二、间接最小二乘法二、间接最小二乘法(ILS,Indirect Least(ILS,Indirect Least Squares)Squares)第6页/共52页方法思路方法思路联立方程模型的结构方程中包含有内生解释变量,不能直接采用OLSOLS估计其参数。但是对于简化式方程,可以采用OLSOLS直接估计其参数。间接最小二乘法:先对关于内生解释变量
4、的简化式方程采用OLSOLS估计简化式参数,得到简化式参数估计量,然后通过参数关系体系,计算得到结构式参数的估计量。间接最小二乘法只适用于恰好识别的结构方程的参数估计,因为只有恰好识别的结构方程,才能从参数关系体系中得到唯一一组结构参数的估计量。第7页/共52页一般间接最小二乘法的估计过程一般间接最小二乘法的估计过程 第8页/共52页第9页/共52页 用OLS估计简化式模型,得到简化式参数估计量,代入该参数关系体系,先由第2组方程计算得到内生解释变量的参数,然后再代入第1组方程计算得到先决解释变量的参数。于是得到了结构方程的所有结构参数估计量。第10页/共52页间接最小二乘法也是一种工具变量方
5、法间接最小二乘法也是一种工具变量方法 ILS等价于一种工具变量方法:依次选择X作为(Y0,X0)的工具变量。数学证明见计量经济学方法与应用(李子奈编著,清华大学出版社,1992年3月)第126128页。估计结果为:第11页/共52页三、二阶段最小二乘法三、二阶段最小二乘法(2SLS,Two Stage Least(2SLS,Two Stage Least Squares)Squares)第12页/共52页2SLS2SLS是应用最多的单方程估计方法是应用最多的单方程估计方法IVIV和ILSILS一般只适用于联立方程模型中恰好识别的结构方程的估计。在实际的联立方程模型中,恰好识别的结构方程很少出现
6、,一般情况下结构方程都是过度识别的。为什么?2SLS2SLS是一种既适用于恰好识别的结构方程,又适用于过度识别的结构方程的单方程估计方法。第13页/共52页2SLS2SLS的方法步骤的方法步骤第一阶段:对内生解释变量的简化式方程使用OLSOLS。得到:用估计量代替结构方程中的内生解释变量,得到新的模型:第14页/共52页第二阶段:对该模型应用OLS估计,得到的参数估计量即为原结构方程参数的二阶段最小二乘估计量。第15页/共52页二阶段最小二乘法也是一种工具变量方法二阶段最小二乘法也是一种工具变量方法 如果用Y Y0 0的估计量作为工具变量,按照工具变量方法的估计过程,应该得到如下的结构参数估计
7、量:可以严格证明两组参数估计量是完全等价的,所以可以把2SLS2SLS也看成为一种工具变量方法。证明过程见计量经济学方法与应用(李子奈编著,清华大学出版社,1992年3月)第130131页。第16页/共52页四、三种方法的等价性证明四、三种方法的等价性证明第17页/共52页三种单方程估计方法得到的参数估计量三种单方程估计方法得到的参数估计量 第18页/共52页IVIV与与ILSILS估计量的等价性估计量的等价性在恰好识别情况下工具变量集合相同,只是次序不同。次序不同不影响正规方程组的解。第19页/共52页2SLS2SLS与与ILSILS估计量的等价性估计量的等价性在恰好识别情况下ILS的工具变
8、量是全体先决变量。2SLS的每个工具变量都是全体先决变量的线性组合。2SLS的正规方程组相当于ILS的正规方程组经过一系列的初等变换的结果。线性代数方程组经过初等变换不影响方程组的解。第20页/共52页五、简单宏观经济模型实例演示五、简单宏观经济模型实例演示第21页/共52页模型模型 消费方程是恰好识别的;投资方程是过度识别的;模型是可以识别的。第22页/共52页数据数据第23页/共52页用狭义的工具变量法估计消费方程用狭义的工具变量法估计消费方程 用Gt作为Yt的工具变量第24页/共52页估计结果显示第25页/共52页用间接最小二乘法估计消费方程用间接最小二乘法估计消费方程第26页/共52页
9、C简化式模型估计结果第27页/共52页Y简化式模型估计结果第28页/共52页用两阶段最小二乘法估计消费方程用两阶段最小二乘法估计消费方程 比较上述消费方程的3种估计结果,证明这3种方法对于恰好识别的结构方程是等价的。估计量的差别只是很小的计算误差。代替原消费方程中的Yt,应用OLS估计第29页/共52页第2阶段估计结果第30页/共52页用两阶段最小二乘法估计投资方程用两阶段最小二乘法估计投资方程 投资方程是过度识别的结构方程,只能用2SLS估计。估计过程与上述2SLS估计消费方程的过程相同。得到投资方程的参数估计量为:至此,完成了该模型系统的估计。第31页/共52页2SLS第2阶段估计结果第3
10、2页/共52页用用GMM估计投资方程估计投资方程投资方程是过度识别的结构方程,也可以用GMM估计。选择的工具变量为c、G、CC1,得到投资方程的参数估计量为:与2SLS结果比较,结构参数估计量变化不大。残差平方和由24223582变为3832486,显著减少。为什么?利用了更多的信息。第33页/共52页GMM估计结果第34页/共52页六、主分量法的应用六、主分量法的应用第35页/共52页方法的提出方法的提出主分量方法本身并不是联立方程模型的估计方法,而是配合其它方法,例如2SLS使用于模型的估计过程之中。数学上的主分量方法早就成熟,Kloek和Mennes于1960年提出将它用于计量经济学模型
11、的估计。2SLS是一种普遍适用的联立方程模型的单方程估计方法,但是当它在实际模型估计中被应用时,立刻就会遇到不可逾越的困难。其第一阶段用OLS估计简化式方程,是难以实现的。为什么?第36页/共52页方法的原理方法的原理所谓主分量方法,就是用较少数目的新变量重新表示原模型中较多数目的先决变量的方法。例如,如果能够找到5个左右的新变量表示宏观经济模型中的30个先决变量,那么只需要15组以上的样本,就可以进行2SLS第一阶段的估计。对充当主分量的变量是有严格要求:一是它必须是先决变量的线性组合,二是它们之间必须是正交的。前一条是保证主分量对先决变量的代表性;后一条是保证主分量之间不出现共线性。第37
12、页/共52页主分量的选取主分量的选取用两个主分量表示两个原变量 可以证明,a1、a2分别是XX的2个特征值对应的特征向量。第38页/共52页用k个主分量表示k个原变量 同样可以证明,a1、a2、ak分别是XX的k个特征值对应的特征向量。第39页/共52页用f个主分量表示k个原变量 选择a1、a2、af分别是XX的f个最大特征值对应的特征向量。第40页/共52页在2SLS中主分量的选取 对于简化式方程 第41页/共52页主分量法在主分量法在ILSILS中的应用中的应用对于2SLS,直接利用主分量完成第一阶段的估计,得到内生解释变量的估计量。对于ILS,必须求得到简化式参数,进而计算结构式参数。首
13、先估计Y=Z+,然后将Z=XA代入,得到Y=X 中的估计量。第42页/共52页七、其它有限信息估计方法简介七、其它有限信息估计方法简介(Limited Information(Limited Information Estimation Methods)Estimation Methods)第43页/共52页有限信息最大或然法有限信息最大或然法(LIML(LIML,Limited Information Maximum Likelihood)以最大或然为准则、通过对简化式模型进行最大或然估计,以得到结构方程参数估计量的联立方程模型的单方程估计方法。由Anderson和Rubin于1949年提出
14、,早于两阶段最小二乘法。适用于恰好识别和过度识别结构方程的估计。第44页/共52页在该方法中,以下两个概念是重要的:一是这里的“有限信息”指的是每次估计只考虑一个结构方程的信息,而没有考虑模型系统中其它结构方程的信息;二是这里的“最大或然法”是针对结构方程中包含的内生变量的简化式模型的,即应用最大或然法求得的是简化式参数估计量,而不是结构式参数估计量。具体参见教科书。第45页/共52页有限信息最小方差比方法有限信息最小方差比方法(LVRLVR,Least Variable Ratio)估计某一个结构方程参数时,仍然只利用关于该方程的信息,没有利用方程系统的信息,所以是一种有限信息估计方法。参见
15、教科书。第46页/共52页八、八、k k级估计式级估计式第47页/共52页kk级估计式级估计式 本身不是一种估计方法,而是对上述几种方法得到的估计式的概括。对于联立方程模型中的第1个结构方程:k级估计式 为:第48页/共52页显然,当 k=0时,即为OLS估计式;k=1时,即为2SLS估计式;k等于有限信息估计方法中的时,即为有限信息估计式。第49页/共52页kk级估计式的性质级估计式的性质 假设工具变量与随机误差项不相关,即且先决变量与随机误差项不相关,即那么,容易证明k级估计式是一致性估计式。第50页/共52页工具变量与随机误差项不相关,对k是有限制的,必须有(证明见教科书):这就是说,只有在2SLS或有限信息估计方法中,k级估计式是一致性估计式,而在OLS方法中,不具有一致性。第51页/共52页感谢您的观看。第52页/共52页