《分析法与综合法.doc》由会员分享,可在线阅读,更多相关《分析法与综合法.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分析法与综合法一、 分析法与综合法的定义1、 定义 所谓分析法,是指“执果索因的思维方法,即从结论出发,不断地去寻找需知,直至到达事实为止的方法分析法的思维全貌可概括为下面形式:“结论需知需知所谓综合法,是指“由因导果的思维方法,即从条件出发,不断地展开思考,去探索结论的方法综合法的思维过程的全貌可概括为下面形式:“可知可知结论二 、例题赏析 例1、:,且,求证:证明一:分析法要证,即证,因为,故只需证,即证,即证,因为,所以成立,所以成立证明二:综合法由,知,即,那么又,那么,即实际证题过程中,分析法与综合法往往是结合起来运用的,把分析法与综合法孤立起来运用是比拟少的问题仅在于,在构建命题的
2、证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚好相反,综合法居主导地位,而分析法伴随着它特别是,对于那些较为复杂的数学命题,不管是从“推向“未知,或者是由“未知靠拢“,都有一个比拟长的过程,单靠分析法或综合法显得较为困难为保证探索方向准确及过程快捷,人们又常常把分析法与综合法两者并列起来使用,即常采取同时从与结论出发,寻找问题的一个中间目标从到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通与结论,构建出证明的有效路径上面所言的思维模式可概括为如下列图所示:综合法与分析法是逻辑推理的思维方法,它对于培养思维的严谨性极为有用把分析法与综合法两者并列起来进
3、展思考,寻求问题的解答途径方式,就是人们通常所说的分析、综合法下面举一具体例子加以说明:例2、假设是不全相等的正数,求证:证明:要证只需证,只需证但是,且上述三式中的等号不全成立,所以因此注:这个证明中的前半局部用的是分析法,后半局部用的是综合法例3、例1 如图1,在四面体中,求证:平面平面分析:要证面面垂直需通过线面垂直来实现,可是哪一条直线是我们所需要的与平面垂直的直线呢?我们假设两平面垂直已经知道,那么根据两平面垂直的性质定理,在平面内作,那么平面,所以即为我们所要寻找的直线要证明平面,除了的之外,还需要在平面内找一条直线与垂直,哪一条呢?假设知道平面,那么与平面内的任意直线均垂直,即必
4、有,但这两个垂直的证明较难入手,还有其他的直线吗?连结呢?假设已经知道平面,那么必有通过计算可得到,原题得证证明:设的中点为,连结,因为,所以;设,因为,所以,所以,即,又,所以平面,又平面,所以平面平面例4、如图,在长方体中,证明:平面平面 分析:要证明两平面平行,需在一平面内寻找两条相交直线与另一平面平行假设两平面平行,那么一个平面内的任意直线均与另一个平面平行,所以有均与平面平行,选择任意两条均可,不妨选择要想证明与平面平行,需在平面内寻找两条直线分别与平行,假设与平面平行,那么根据线面平行的性质定理,过的平面与平面相交所得的交线与平行;过的平面与平面相交所得的交线与平行即为所要寻找的直
5、线从而易知分别与平行,原题得证证明:因为为长方体,所以有,即四边形为平行四边形,从而有,又平面平面,进而有平面;同理有,从而有平面;又,所以有平面平面从上面的两例可以看出,分析法的根本思路是:从“未知看“需知,逐步靠拢“,其逐步推理,实际上是要寻找它的充分条件同学们可以在学习过程中,沿着这样的解题思路,亲自体验一下分析法在立几证明中的妙用.例4、 设A、B、C是双曲线xy=1上的三点,求证:ABC的垂心H必在此双曲线上分析:如图11,设H的坐标为(x0,y0),要证H在此双曲线上,即证x0y0=1而H是两条高AH与BH的交点,因此需求直线AH、BH的方程,进而从所得方程组中设法推出x0y0=1
6、证明:如图11,由可设A、B、C的坐标分别为设点H的坐标为(x0,y0),那么由式左乘式右及式右乘式左,得化简可得x0y0(-)=- ,x0y0=1故H点必在双曲线xy=1上讲解:本证法的思考过程中,从分析法入手,得出证点H在双曲线xy=1上就是证x0y0=1这为综合法证明此题指明了目标在用综合法证明的过程中,牢牢抓住这个目标,去寻找x0、y0的关系式,用式子与相乘,巧妙地消去参数、,得到x0y0=1从而防止了解方程的麻烦,提高了解题速度练习:1、设的最小值是 A B C3 D2、在中,那么一定是锐角三角形直角三角形钝角三角形不确定3观察式子:,那么可归纳出式子为4、实数,且函数有最小值,那么=_。5、是不相等的正数,那么的大小关系是_。6、假设正整数满足,那么7、a,b,cR+,求证:(a+1)(b+1)(a+c)3(b+c)3256a2b2c3.8、x,y,z,a均大于1,且logaxyz=9,求证:logxa+logya+logza1.9、 都是互不相等的正数,求证18如图,矩形所在平面,分别是的中点求证:1平面;2第 7 页