《第21章一元二次方程复习 (2).ppt》由会员分享,可在线阅读,更多相关《第21章一元二次方程复习 (2).ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、本章知识网络 概念:-一般形式:ax2+bx+c=0(a0)直接开平方法:x2=p(p0)(mx+n)2=p(p0)解法 配方法 一 公式法:因式分解法:(ax+b)(cx+d)=0 元 判别式:b2-4ac=0 判别式 不解方程,判别方程根的情况,二 用处 求方程中待定常数的值或取值范围,进行有关的证明,次 关系:x1+x2=-b/a x1.x2=c/a 已知方程的一个根,求另一个根及字母的值,方 根与系数的关系 求与方程的根有关的代数式的值,用处 求作一元二次方程,程 已知两数的和与积,求此两数 判断方程两根的特殊关系,实际问题与一元二次方程:审,设,列.解,验,答,1.一元二次方程的概念
2、一元二次方程的概念 只含有一个未知数,并且未知数的最高次数是只含有一个未知数,并且未知数的最高次数是2的整式的整式方程叫做一元二次方程。方程叫做一元二次方程。2、一元二次方程的一般形式、一元二次方程的一般形式 一般地一般地一般地一般地,任何一个关于任何一个关于任何一个关于任何一个关于x x x x 的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以化为化为化为化为 的形式的形式的形式的形式,我们把我们把我们把我们把(a,b,c(a,b,c(a,b,c(a,b,c为常数,为常数,为常数,为常数,a a a a0000)称为称为称为称为一元二次方程的一般形式一元二次方
3、程的一般形式一元二次方程的一般形式一元二次方程的一般形式。x +x-20=02观察方程观察方程等号两边都是整式等号两边都是整式 只含有一个未知数只含有一个未知数未知数的最高次数是未知数的最高次数是2次次这样的方程叫这样的方程叫一元二次方程特征如下:特征如下:有何特征?有何特征?(1)2x=y 2-1(3)x 2-3=02x(4)3z2+1=z(2z2-1)(5)x 2=0结论:以上方程中结论:以上方程中(2)、(5)、(6)是一元二次方程是一元二次方程(6)(x+2)2 =4请判断下列方程是否为一元二次方程:请判断下列方程是否为一元二次方程:1.直接开平方法对于形如ax2=p(p0)或(mx+
4、n)2=p(po)的方程可以用直接开平方法解2.配方法用配方法解一元二次方程的步骤:1.化1:把二次项系数化为1(方程两边都除以二次项系数);2.移项:把常数项移到方程的右边;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法3.公式法 一般地,对于一元二次方程 ax2+bx+c=0(a0)上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法(老
5、师提示:用公式法解一元二次方程的前提是:1.必需是一般形式的一元二次方程:ax2+bx+c=0(a0).2.b2-4ac0.公式法是这样生产的 你能用配方法解方程 ax2+bx+c=0(a0)吗?心动 不如行动1.化1:把二次项系数化为1;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.2.移项:把常数项移到方程的右边;4.分解因式法 当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方
6、程的方法称为分解因式法.老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法虽然是万能的,对任何一元二次方程都适用,、公式法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时我们首先考虑能否应用虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方等简单方法,若不行
7、,再考虑公式法(适当也可考虑配方法)法,若不行,再考虑公式法(适当也可考虑配方法)3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。形式再选取合理的方法。1 1、直接开平方法直接开平方法因式分解法因式分解法(y+)(y-)=2(2y-3)(y+)(y-)=2(2y-3)3t(t+2)=2(t+2)3t(t+2)=2(t+2)x x2 2=4 x-11=4 x-11(x+101)(x+101)2 2-10(x+101)+9=
8、0-10(x+101)+9=0比一比,看谁做得快:比一比,看谁做得快:我们知道:代数式b2-4ac对于方程的根起着关键的作用.一元二次方程的根的判别式若方程有两个若方程有两个 不相等的实数根不相等的实数根,则则b2-4ac0 回顾与反思判别式逆定理判别式逆定理若方程有两个若方程有两个 相等的实数根相等的实数根,则则b2-4ac=0若方程没有实数根若方程没有实数根,则则b2-4ac0若方程有两个若方程有两个 实数根实数根,则则b2-4ac0判别式的用处1.不解方程.判别方程根的情况,2.根据方程根的情况,确定方程中待定常数的值或取值范围,3.进行有关的证明,一元二次方程根与系数的关系一元二次方程
9、根与系数的关系设设x1,x2是一元二次方程是一元二次方程ax2+bx+c=0(a0)的两个根的两个根,则有则有x1+x2=,x1x2=.案例案例1:关于关于x的方程的方程有两个不相等的实数根,有两个不相等的实数根,求求k的取值范围。的取值范围。解:解:解得解得k又又k-10 k且且k0说一说说一说忽视二次项忽视二次项系数不为系数不为0案例案例2:已知已知k为实数,解关于为实数,解关于x的方程的方程解:解:当当k=0时,时,方程为方程为3x=0,x=0将原方程左边分解因式,得将原方程左边分解因式,得当当k0时,时,说一说说一说忽视对方程忽视对方程分类讨论分类讨论案例案例3:已知实数已知实数x满足
10、满足求:代数式求:代数式解:解:,的值。的值。或或又又无无实实根,根,说一说说一说忽视根的忽视根的存在条件!存在条件!案例案例4:已知关于已知关于x的一元二次方程的一元二次方程有两个实根,求有两个实根,求k的取值范围。的取值范围。解:由解:由0,可得,可得解得解得 k-2又又k+10,k1k 的取值范围是的取值范围是k1说一说说一说忽视系数中忽视系数中的隐含条件的隐含条件案例案例5:已知已知 ,是方程是方程的两根,求的两根,求解:解:的值。的值。说一说说一说忽视讨论两忽视讨论两根的符号!根的符号!案例案例6:已知方程已知方程的两个实根为的两个实根为、,设,设,求求:整数时整数时S的值为的值为1
11、。解:原方程整理解:原方程整理,=为非负整数为非负整数。取什么取什么由由=4a+10得得,由,由得得说一说说一说忽视系数中的忽视系数中的隐含条件与隐含条件与判别式判别式。取整数取整数0。案例案例7:在在RtABC中,中,C=,斜边斜边c=5,的两根,求的两根,求m的值的值。解:在解:在RtABC中,中,C=检验检验:当当时,时,都大于都大于0两直角边的长两直角边的长a、b是是又因为直角边又因为直角边a,b的长均为正所以的长均为正所以m 的值只有的值只有7。说一说说一说忽视实忽视实际意义际意义!理一理理一理一元二次方程中几个容易忽视问题:一元二次方程中几个容易忽视问题:重视重视二次项系数不为二次
12、项系数不为0;重视重视对方程分类讨论;对方程分类讨论;重视重视系数中的隐含条件;系数中的隐含条件;重视重视根的存在条件根的存在条件;重视重视讨论两根的符号;讨论两根的符号;重视重视根要符合实际意义。根要符合实际意义。说一说说一说系数系数根根解应用题列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.回顾与复习5 5列一元二
13、次方程解决实际问题应注意什么?列一元二次方程解决实际问题应注意什么?在实际问题中找出数学模型(即把实际问题转化为数学问题)在实际问题中找出数学模型(即把实际问题转化为数学问题)1.数字与方程 例1.一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.数字与方程例2.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.2.几何与方程例1.一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度.2
14、01515+2x20+2x几何与方程例2.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.几何与方程例3.将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?(3).这两个正方形的面积之和可能等于200m2吗?例例1.甲公司前年缴税甲公司前年缴税40万元,今年缴税万元,今年缴税48.4万元万元.该公司该公司缴税的年平均增长率为多少缴税的年平均增长率为多少?3.增长率与方程基本数量
15、关系:a(1+x)2=b例例2.某公司计划经过两年把某种商品的生产成本降低某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几,那么平均每年需降低百分之几?增长率与方程例例1.一次会议上一次会议上,每两个参加会议的人都互相握了一次每两个参加会议的人都互相握了一次手手,有人统计一共握了有人统计一共握了66次手次手.这次会议到会的人数是这次会议到会的人数是多少多少?4.美满生活与方程 某种电脑病毒传播非常快,如果某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就一台电脑被感染,经过两轮感染后就会有会有81台电脑被感染请你用学过的台电脑被感染请你用学过的知识分析,每
16、轮感染中平均一台电脑知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效会感染几台电脑?若病毒得不到有效控制,控制,3轮感染后,被感染的电脑会轮感染后,被感染的电脑会不会超过不会超过700台?台?例例2.小明将勤工助学挣得的小明将勤工助学挣得的500元钱按一年定期存入银行元钱按一年定期存入银行,到期后取到期后取出出50元用来购买学习用品元用来购买学习用品 剩下的剩下的450元连同应得的税后利息又全部元连同应得的税后利息又全部按一年定期存入银行如果存款的年利率保持不变按一年定期存入银行如果存款的年利率保持不变,且到期后可得税后且到期后可得税后本息约本息约461元元,那么这种存款的年利
17、率大约是多少那么这种存款的年利率大约是多少?(精确到精确到0.01%).美满生活与方程例.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?5.经济效益与方程6.我是商场精英例.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?例.某商店从厂家以每件21元的价格购进一批商品,若每件商品售
18、价为x元,则每天可卖出(350-10 x)件,但物价局限定每件商品加价不能超过进价的20%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?7.利润与方程回味无穷小结 拓展列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.关于两次平均增长(降低)率问题的一般关系:a(1x)2=A(其中a表示基数
19、,x表表示增长(或降低)率,A表示新数)一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用把握住:把握住:一个未知数,最高次数是一个未知数,最高次数是2,整式方程整式方程一般形式:一般形式:ax+bx+c=0(a 0)直接开平方法:直接开平方法:适应于形如(适应于形如(x-k)=h(h0)型型 配方法:配方法:适应于任何一个一元二次方程适应于任何一个一元二次方程公式法:公式法:适应于任何一个一元二次方程适应于任何一个一元二次方程因式分解法:因式分解法:适应于左边能分解为两个一次式的积,适应于左边能分解为两个一次式的积,右边是右边是0的方程的方程