《2022年最新人教版九年级数学下册第二十七章-相似综合测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十七章-相似综合测试试题(含详细解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两城市的实际距离为500km,在比例尺为1:10000000的地图上,则这两城市之间的图上距离为( )A0
2、.5cmB5cmC50cmD500cm2、下列图形中,ABC与DEF不一定相似的是( )ABCD3、如图,已知点M是ABC的重心,AB18,MNAB,则MN的值是()A9BCD64、如图1,物理课上学习过利用小孔成像说明光的直线传播现将图1抽象为图2,其中线段AB为蜡烛的火焰,线段AB为其倒立的像如果蜡烛火焰AB的高度为2cm,倒立的像AB的高度为5cm,线段OA的长为4cm,那么线段OA的长为()A4cmB5cmC8cmD10cm5、如图,D是边AB上一点,过点D作交AC于点E若,则的值( )A2:3B4:9C2:5D4:256、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C
3、在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)7、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是( )ABCD8、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A2:3B4:9C:D16:819、如图,中,D、E分别为AB、AC的中点,则与的面积比为( )ABCD10、如图,RtABC中,ACB90,分别以AB,BC,AC为边在ABC外部作正方形ADEB,CBFG,ACHI将正方形ABED沿直线AB翻
4、折,得到正方形ABED,AD与CH交于点N,点E在边FG上,DE与CG交于点M,记ANC的面积为S1,四边形的面积为S2,若CN2NH,S1+S214,则正方形ABED的面积为()A25B26C27D28第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图利用标杆BE测量建筑物的高度已知标杆BE高1.0m,测得AB1.5m,BC10.5m,则建筑物CD的高是_m2、一块材料形状是RtABC,C=90量得边AC=6cm,AB =10cm,用它来加工一个正方形零件,使正方形的至少一边在RtABC的边上,其余顶点在其它边上,则这个正方形零件的边长为:_3、如图,在ABC中,A
5、B6cm,AC9cm动点P从点A出发以2cm/s的速度向点B运动,动点Q从点C出发以1cm/s的速度向点A运动两点同时出发,其中一点到达终点时,另一点也停止运动当运动时间t_s时,以A、P、Q为顶点的三角形与ABC相似4、如图,在中,若,则的长为_5、图、图均是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点线段的端点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹(1)在图中,在线段上找到点,使;(2)在图中,在线段上找到点,使三、解答题(5小题,每小题10分,共计50分)1、如图,在66的方格纸ABCD中给出格点O和格点EFG,请按要求画格点三
6、角形(顶点在格点上)(1)在图1中画格点OPQ,使点P,Q分别落在边AD,BC上,且POQ90;(2)在图2中画格点GMN,使它与EFG相似(但不全等)2、如图,ABC中,C90,AC4cm,BC3cm,动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也随之停止设它们的运动时间为t(1)根据题意知:CQ ,CP ;(用含t的代数式表示);(2)运动几秒时,CPQ与CBA相似?3、如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG(1)若,
7、则的度数为 ;(2)求证:GDACCFCD4、图、图、图均是的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹)(1)在图中作的中线BD(2)在图中作的高BE(3)在图中作的角平分线BF5、矩形ABCD的周长为28(ABBC),对角线AC与BD相交于点O,对角线长为10,过点O作OPBD,且OPAO,过点P作PEBC,垂足为E,请画出符合题意的图形,并直接写出线段CE的长-参考答案-一、单选题1、B【解析】【分析】先将千米换单位为厘米,然后设这两城市之间的图上距离为,根据比例计算即可得【详解】解:,设
8、这两城市之间的图上距离为,则:,解得:,故选:B【点睛】题目主要考查比例的计算,理解题意,注意单位变换是解题关键2、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判
9、定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理3、D【解析】【分析】根据重心的概念得到,证明CMNCDB,根据相似三角形的性质列式计算,得到答案【详解】点M是ABC的重心,AB18,AD=DB=AB=9,MN/AB,CMNCDB,即解得:MN=6,故选:D【点睛】本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键4、D【解析】【分析】由AB/ AB,可得AOBAOB进而根据相似三角形的性质列出比例代入数据求解即可【详解】AB/ AB,AOBAOB, ,即 ,cm,故选D【点睛】
10、本题考查了相似三角形的判定与性质,掌握相似三角形的性质与判定是解决本题的关键5、D【解析】【分析】由题意易得,然后根据相似三角形的性质可求解【详解】解:DEBC,;故选D【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键6、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键7、B【解析】【分析】根据正方形的性
11、质求出,根据相似三角形的判定定理判断即可【详解】解:由正方形的性质可知,、图形中的钝角都不等于,由勾股定理得,对应的图形中的边长分别为1和,图中的三角形(阴影部分)与相似,故选:B【点睛】本题考查的是相似三角形的判定,解题的关键是掌握两组对应边的比相等且夹角对应相等的两个三角形相似8、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案【详解】解:两个相似多边形的周长比是2:3,这两个相似多边形的相似比是2:3,它们的面积比是4:9,故选B【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键
12、9、D【解析】【分析】证明DE是ABC的中位线,由三角形中位线定理得出DEBC,DE=BC,证出ADEABC,由相似三角形的性质得出ADE的面积:ABC的面积=1:4,即可得出结果【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=()2=1:4,故选:D【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键10、B【解析】【分析】设,则,证明,得出,根据,再证明,得出,可以得出,得出等式,求解即可得到【详解】解:设,则,由题意知:,在和中,在中由勾
13、股定理得:,在和中,解得:,故选:B【点睛】本题考查正方形的性质、三角形相似、三角形全等、勾股定理,解题的关键是掌握相应的判定定理,通过转化的思想及等量代换的思想进行求解二、填空题1、8【解析】【分析】先证AEBADC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD8(m).故答案为8【点睛】本题考查了相似的判定和性质,利用相似的性质列出含所求边的比例式是解题的关键2、或【解析】【分析】分正方形的边长在直角边上和斜边上两种情况讨论,根据相似三角形的性质与判定即可求得正方形的边长【详解】解:RtABC,C=90,AC=6cm,AB =1
14、0cm,如图,设正方形的边长为,则 四边形是正方形,即解得(2)如图,设正方形的边长为四边形是正方形,在上即四边形是正方形,又又, 即即解得综上所述,正方形的边长为:或故答案为:或【点睛】本题考查了正方形的性质,勾股定理,相似三角形的性质与判定,分类讨论是解题的关键3、【解析】【分析】分APQABC、AQPABC两种情况,列出比例式,计算即可【详解】解:由题意得:AP2tcm,CQtcm,则AQ(9t)cm,当t=62=30t3PAQBAC,当时,APQABC,解得:t,当时,AQPABC,解得:t,3,故舍去综上所述:当t时,以A、P、Q为顶点的三角形与ABC相似,故答案为:【点睛】解此类题
15、的关键是在运动中寻找相似图形,当运动的时间为t时,要用t来表示相关线段的长度,得出与变量有关的比例式,从而得到函数关系解题时注意数形结合,考虑全面,做好分类讨论4、【解析】【分析】根据平行线证出三角形相似,得出对应边成比例,即可得出结果【详解】,即故答案是:【点睛】本题考查了相似三角形的判定与性质,根据平行线证出三角形相似是关键5、(1)见解析;(2)见解析【解析】【分析】(1)根据网格即可在线段AB上找到点C,使AC=BC;(2)根据相似三角形的性质即可在线段AB上找到点E,使【详解】(1)如图,点即为所求;(2)如图,点即为所求【点睛】本题考查了作图-应用与设计作图,相似三角形的判定与性质
16、,解决本题的关键是熟练掌握基本知识三、解答题1、(1)见解析;(2)见解析【解析】【分析】(1)利用正方形的性质,将作为44组成的正方形的对角线,将作为22组成的正方形的对角线,即可得到;(2)根据且不全等,作即可实现【详解】解:(1)如图:满足题意;(2)如图:作,即满足题意;【点睛】本题考查了作直角三角形,相似三角形,解题的关键是掌握三角形相似的判定定理及作图能力2、(1)2t;3-t;(2)或911秒【解析】【分析】(1)结合题意,直接得出答案即可;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解:若CPQCBA,若CPQCAB,然后列方程求解【详解】解:(1)经过t秒后,CQ
17、=2t,CP=BC-BP=3-t ;(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,若CPQCBA,则CPCB=CQCA ,即3-t3=2t4 ,解得:t=65s,若CPQCAB,则CPCA=CQCB,即3-t4=2t3,解得:t=911s,由动点P从点B出发以1cm/s速度向点C移动,同时动点Q从C出发以2cm/s的速度向点A移动,其中一个点到终点另一个点也随之停止,可求出t的取值范围应该为0t2 ,验证可知两种情况下所求的t均满足条件,故CPQ与CBA相似,运动的时间为或911秒【点睛】本题考查一元一次方程的实际运用,相似三角形的判定和性质,掌握相似三角形的性质是解决问题的关键
18、3、(1);(2)见详解【解析】【分析】(1)由四边形ABCD,AEFG是正方形,得到,于是得到,推出,由于,于是得到结论;(2)由正方形的性质可得,由,可证,由此证出;【详解】(1)四边形ABCD,四边形AEFG为正方形故答案为:(2)四边形ABCD,四边形AEFG为正方形 ,【点睛】本题主要考查了正方形的性质,勾股定理和相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解4、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)如图,取AC与MN的交点D,连接BD,BD即为所求作的中线;(2)如图,连接BG,交AC于点E,BE即为所求作的高线;(3)如图,连接BP,交
19、AC于点F,BF即为所求作的角平分线【详解】解:(1)如图,BD即为所求作的中线证明:由题意得AMD=CND=90,ADM=CDN,又AM=CN=2,AMDCND,AD=CD,BD为ABC的中线(2)如图,BE即为所求作的高线证明:BC=CH=4,CG=AH=1, BCG=CHA,BCGCHA, CBG=HCA,BCG=90,BCE+ACH=90,BCE+GBC=90,BEC=90,即BEAC,BE为ABC的高线 (3)如图,BF即为所求作的角平分线证明:如图,由题意得AB=32+42=5,AP=12+22=5,BP=22+42=25,APPC=ABBP=BPPC=52,ABPPBC,ABP=
20、PBC,即ABF=CBF, BF为ABC的角平分线【点睛】本题考查了网格内作三角形的角平分线,高线,中线,涉及到全等三角形判定与性质、勾股定理、相似三角形的判定与性质等知识,综合性较强,理解相关知识并灵活运用是解题关键5、见解析,1或7【解析】【分析】根据题意分P在上方和P在下方两种情况,进而结合相似三角形的判定与性质以及勾股定理进行分析计算即可得出线段CE的长【详解】解:如图,P在上方时,连接PD,PO交AD于点F,PE交AD于点G,矩形ABCD的周长为28(ABBC),对角线长为10,解得OPBD,,得,PEBC,,得,,;如图,P在下方时,连接BP,OP交BC于点H,同理得,BP= ,.综上得线段CE的长为1或7【点睛】本题考查相似三角形的判定与性质以及勾股定理和矩形的性质,熟练掌握相关知识求解是解题的关键.