《高二数学教案范本最新5篇.docx》由会员分享,可在线阅读,更多相关《高二数学教案范本最新5篇.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学教案范本最新5篇高二数学教案 篇一 一、教学目标: 1、知识与技能目标 理解循环结构,能识别和理解简单的框图的功能。 能运用循环结构设计程序框图解决简单的问题。 2、过程与方法目标 通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。 3、情感、态度与价值观目标 通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析 二、教学重点、难点 重点:理解循环结构,能识别和画出简单的循环结构框图, 难点:循环结构中循环条件和循环体的确定。 三、教法、学法 本节课我遵循引导发现
2、,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。 四、 教学过程: (一)创设情境,温故求新 引例:写出求 的值的一个算法,并用框图表示你的算法。 此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解求创。 设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。 (二)讲授新课 1、循序渐进,理解知识 【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环
3、结构的关键步骤。 (1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径 引例“求 的值”这个问题的自然求和过程可以表示为: 用递推公式表示为: 直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。 (2)“ ”的含义 利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明 的作用是将赋值号右边表
4、达式 的值赋给赋值号左边的变量 。 赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。 赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。 借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。 (3)初始化变量,设置循环终止条件 由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。 【2】循环结构的概念 根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。 教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同
5、时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。 2、类比探究,掌握知识 例1:改造引例的程序框图表示求 的值 求 的值 求 的值 求 的值 此例可由学生独立思考、回答,师生共同点评完成。 通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:确定循环变量和初始值确定循环体确定循环终止条件。 高二数学优秀教案5 篇二 高中数学必修教案 一、教学过程 1、复习。 反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。 求出函数y=x3的反函数。 2、新课。 先让学生用几何画板画出y=x3的图象,学生
6、纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1): 教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。 生2:这是y=x3的反函数y=的图象。 师:对,但是怎么会得到这个图象,请大家讨论。 (学生展开讨论,但找不出原因。) 师:我们请生1再给大家演示一下,大家帮他找找原因。 (生1将他的制作过程重新重复了一次。) 生3:问题出在他选择的次序不对。 师:哪个次序? 生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。
7、 师:是这样吗?我们请生1再做一次。 (这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。) 师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢? (学生再次陷入思考,一会儿有学生举手。) 师:我们请生4来告诉大家。 生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。 师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的。关系,同学们能不能看出这两个函数的图象有什么样的关系? (多数学生回答可由y=x3的图象得到y=
8、的图象,于是教师进一步追问。) 师:怎么由y=x3的图象得到y=的图象? 生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。 师:将横坐标与纵坐标互换?怎么换? (学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。) 师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系? (学生重新开始观察这两个函数的图象,一会儿有学生举手。) 生6:我发现这两个图象应是关于某条直线对称。 师:能说说是关于哪条直线对称吗? 生6:我还没找出来。 (接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:) 学生通过移
9、动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。 生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。 师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。 (学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。) 还是有部分学生举手,因为他们画出了如下图象(图3): 教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(xR)没有反函数,也不是函数
10、的图象。 最后教师与学生一起总结: 点(x,y)与点(y,x)关于直线y=x对称; 函数及其反函数的图象关于直线y=x对称。 二、反思与点评 1、在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。 2、荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助
11、直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。 计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。 在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。 当前计算机用于中
12、学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。 3、在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。 高二数学优秀教案5 篇三 高中数学教案:圆 教学目的:掌握圆的标准方程,并能解决与之有关的。问题 教学重点:圆的标准方程及有关
13、运用 教学难点:标准方程的灵活运用 教学过程: 一、导入新课,探究标准方程 二、掌握知识,巩固练习 练习:说出下列圆的方程 圆心(3,-2)半径为5圆心(0,3)半径为3 指出下列圆的圆心和半径 (x-2)2+(y+3)2=3 x2+y2=2 x2+y2-6x+4y+12=0 判断3x-4y-10=0和x2+y2=4的位置关系 圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程 三、引伸提高,讲解例题 例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。 2、某圆过A(-1
14、0,0)、B(10,0)、C(0,4),求圆的方程。 例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。 例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维) 四、小结练习P771,2,3,4 五、作业P811,2,3,4 高二数学优秀教案 篇四 【教材分析】 1、知识内容与结构分析 集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,
15、结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。 2、知识学习意义分析 通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。 3、教学建议与学法指导 由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。 【学情分析】 在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两
16、个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。 【教学目标】 1、知识与技能 (1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法; (2)掌握集合的常用表示法列举法和描述法。 2、过程与方法 通过实例了解集合的含义,体
17、会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。 3、情态与价值 在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。 【重点难点】 1、教学重点:集合的基本概念与表示方法。 2、教学难点:选择合适的方法正确表示集合。 【教学思路】 通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题学生讨论归纳总结获得新知自我检测”环
18、节安排。 【教学过程】 课前准备: 提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。 导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-73的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!) 下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好
19、?(同学们在被调动起情绪的时候应该说:好!) 教与学的过程: 预设问题设计意图师生活动教师活动 一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。) 学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(
20、简称集)。学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就 说a属于A集合A,记做aA,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。 可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“
21、”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。 即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。 (2)互异性:同一个集合中的元素是互不相同的。 (3)
22、无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。 高二数学教案 篇五 教学目标: 1了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义 2通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义 教学重点: 复数的几何意义,复数加减法的几何意义 教学难点: 复数加减法的几何意义 教学过程: 一 、问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示那么,复
23、数是否也能用点来表示呢? 二、学生活动 问题1 任何一个复数abi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢? 问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗? 问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢? 问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作
24、图的方法得到吗?两个复数差的模有什么几何意义? 三、建构数学 1复数的几何意义:在平面直角坐标系中,以复数abi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数abi,这就是复数的几何意义 2复平面:建立了直角坐标系来表示复数的平面其中x轴为实轴,y轴为虚轴实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 3因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数zabi,这也是复数的几何意义 6复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的
25、距离同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的 四、数学应用 例1 在复平面内,分别用点和向量表示下列复数4,2i,i,13i,32i 练习 课本P123练习第3,4题(口答) 思考 1复平面内,表示一对共轭虚数的两个点具有怎样的位置关系? 2如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系? 3“a0”是“复数abi(a,bR)是纯虚数”的_条件 4“a0”是“复数abi(a,bR)所对应的点在虚轴上”的_条件 例2 已知复数z(m2m6)(m2m2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围 例3 已知复数z134i,z215i,试比较它们模的大小 思考 任意两个复数都可以比较大小吗? 例4 设zC,满足下列条件的点Z的集合是什么图形? (1)z2;(2)2z3 变式:课本P124习题33第6题 五、要点归纳与方法小结 本节课学习了以下内容: 1复数的几何意义 2复数加减法的几何意义 3数形结合的思想方法16