【人教A版】2016年秋高中数学选修2-2:1.1《变化率与导数》ppt精品课件.ppt

上传人:得****1 文档编号:75133363 上传时间:2023-03-02 格式:PPT 页数:37 大小:2.24MB
返回 下载 相关 举报
【人教A版】2016年秋高中数学选修2-2:1.1《变化率与导数》ppt精品课件.ppt_第1页
第1页 / 共37页
【人教A版】2016年秋高中数学选修2-2:1.1《变化率与导数》ppt精品课件.ppt_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《【人教A版】2016年秋高中数学选修2-2:1.1《变化率与导数》ppt精品课件.ppt》由会员分享,可在线阅读,更多相关《【人教A版】2016年秋高中数学选修2-2:1.1《变化率与导数》ppt精品课件.ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.1 变化率与导数变化率与导数一创设情景一创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数函数,随着对函数的研究,产生了微积分微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等。导数导数是微积分的核心核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数导数研究的问题即变化率问题变化率问题:研究某个变量相对于另研究某个变量相对于另一个变量变化的快慢程度一个变量变化的快慢程度 在吹气球

2、的过程中,可发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?探究过程:如图是函数探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,的图像,结合图形可知,所以,所以,虽然运动员在虽然运动员在 这段时间里的平均这段时间里的平均速度为速度为 ,但实际情况是运动员仍然,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态能精确描述运动员的运动状态thO例例 (1)计算函数计算函数 f(x)=2 x+1在区间在区间 3,1上的平均变化率上的平均变化率;(2)求函数

3、求函数f(x)=x2+1的平均变化率。的平均变化率。(1)解:解:y=f(-1)-f(-3)=4 x=-1-(-3)=2(2)解:解:y=f(x+x)-f(x)=2x x+(x)2 直线直线AB的斜率的斜率AB练习1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+x,-2+y),则y/x=()A.3 B.3x-(x)2 C.3-(x)2 D.3-x D3.求y=x2在x=x0附近的平均变化率.A小结小结v1.函数的平均变化率函数的平均变化率l2.求函数的平均变化率的步骤:(1)求函数的增量:y=f(x2)-f(x1);(2)计算平均变化率:1.1.2 导数的概念

4、导数的概念思考?思考?thO 需要用瞬时速度描述运动状态。我们把需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为物体在某一时刻的速度称为瞬时速度瞬时速度.虽然运动员在虽然运动员在 这段时间里的平均这段时间里的平均速度为速度为 ,但实际情况是运动员仍然运动,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述并非静止,可以说明用平均速度不能精确描述运动员在运动员在任意时刻任意时刻的运动状态的运动状态 探究:探究:阅读课本阅读课本P4页,思考:页,思考:1、在、在t=2附近的平均速度与附近的平均速度与t=2瞬时速度之间的关系?瞬时速度之间的关系?(以高台跳水为例)(以高台

5、跳水为例)t=2瞬时速度就是瞬时速度就是t=2附近的平均速附近的平均速度当时间变化量趋于度当时间变化量趋于0的极限!的极限!2、在某一时刻、在某一时刻 的瞬时速度怎样表示的瞬时速度怎样表示?3、函数、函数f(x)在在x=x0处的瞬时变化率怎样处的瞬时变化率怎样表示?表示?2.导数概念导数概念一般地,函数一般地,函数 在在 处的瞬时处的瞬时变化率是变化率是我们称它为函数我们称它为函数 在在 的的导数导数,记作,记作 ,或,或练一练练一练试求函数试求函数 在在x=1处的导数处的导数。解:解:在在x=3处的导数?处的导数?由导数的定义可知由导数的定义可知,求函数求函数 y=f(x)的导数的一般方法的

6、导数的一般方法:1.求函数的改变量求函数的改变量2.求平均变化率求平均变化率3.求瞬时变化率求瞬时变化率(极限)极限)口诀:一差、二化、三极限口诀:一差、二化、三极限1.1.3导数的几何意义导数的几何意义复习回顾:导数的概念复习回顾:导数的概念 定义定义:设函数:设函数y=f(x)在点在点x0处及其附近有定义处及其附近有定义,当当自变量自变量x在点在点x0处有改变量处有改变量x时函数有相应的改变量时函数有相应的改变量y=f(x0+x)-f(x0).如果当如果当x0 时时,y/x的极限存在的极限存在,这这个极限就叫做函数个极限就叫做函数f(x)在点在点x0处的导数处的导数(或变化率或变化率)记作

7、记作 即即:下面来看导数的几何意义:y=f(x)PQMxyOxyPy=f(x)QMxyOxy 如图如图,曲线曲线C是函数是函数y=f(x)的图象的图象,P(x0,y0)是曲线是曲线C上的上的任意一点任意一点,Q(x0+x,y0+y)为为P邻近一点邻近一点,PQ为为C的割线的割线,PM/x轴轴,QM/y轴轴,为为PQ的的倾斜角倾斜角.斜率!PQoxyy=f(x)割割线线切线切线T请看当点请看当点Q沿着曲线逐渐向点沿着曲线逐渐向点P接近时接近时,割线割线PQ绕着点绕着点P逐渐转动的情况逐渐转动的情况.我们发现我们发现,当点当点Q沿着曲线无限接近点沿着曲线无限接近点P即即x0时时,割线割线PQ有一个

8、极限位置有一个极限位置PT.则我们把直线则我们把直线PT称为曲线在点称为曲线在点P处的处的切线切线.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。做切点。割线趋近于确定的位置的直线定义为割线趋近于确定的位置的直线定义为切线切线.曲线与直线相切,并不曲线与直线相切,并不一定只有一个公共点。一定只有一个公共点。oxyy=f(x)割割线线切切线线PQT我们用曲线上某点处的切线近似代替这一点附我们用曲线上某点处的切线近似代替这

9、一点附近的曲线,这是微积分中重要的思想方法近的曲线,这是微积分中重要的思想方法以直代曲以直代曲oxyy=f(x)割割线线切切线线 设切线的倾斜角为设切线的倾斜角为,那么当那么当x0时时,割线割线PQ的斜率的斜率,称称为曲线在点为曲线在点P处的处的切线的斜率切线的斜率.即即:这个概念这个概念:(1)提供了求曲线上某点切线的斜率的一种方法提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质切线斜率的本质函数在函数在x=x0处的导数处的导数.PQT例例1:求曲线求曲线y=f(x)=x2+1在点在点P(1,2)处的切线方程处的切线方程.QPy=x2+1xy-111OjMDyDx因此因此,切线方程为切

10、线方程为y-2=2(x-1),即即y=2x.求曲线在某点处的切线方程求曲线在某点处的切线方程的基本步骤的基本步骤:先利用切线斜率先利用切线斜率的定义求出切线的斜率的定义求出切线的斜率,然后然后利用点斜式求切线方程利用点斜式求切线方程.例例3如图表示人体血管中的药物浓度如图表示人体血管中的药物浓度c=f(t)(单位:(单位:mg/ml)随时间)随时间t(单位:(单位:min)变化的函数图像,根据图像,估计变化的函数图像,根据图像,估计 t=0.2,0.4,0.6,0.8(min)时,血管中)时,血管中 药物浓度的瞬时变化率,把数据用表格药物浓度的瞬时变化率,把数据用表格 的形式列出。的形式列出。

11、(精确到精确到0.1)血管中药物浓度的血管中药物浓度的瞬时变化率瞬时变化率,就是药物浓度就是药物浓度从图象上看从图象上看,它表示它表示曲线在该点处的曲线在该点处的切线的斜率切线的斜率.函数函数f(t)在此时刻的在此时刻的导数导数,(数形结合,以直代曲)(数形结合,以直代曲)以简单对象刻画复杂的对象以简单对象刻画复杂的对象练习练习:如图已知曲线如图已知曲线 ,求求:(1)点点P处的切线的斜率处的切线的斜率;(2)点点P处的切线方程处的切线方程.yx-2-112-2-11234OP即即点点P处的切线的斜率等于处的切线的斜率等于4.(2)在点在点P处的切线方程是处的切线方程是y-8/3=4(x-2),即即12x-3y-16=0.(1)求出函数在点)求出函数在点x0处的变化率处的变化率 ,得到曲线,得到曲线 在点在点(x0,f(x0)的切线的斜率。的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即)根据直线方程的点斜式写出切线方程,即归纳归纳:求切线方程的步骤求切线方程的步骤 无限逼近的极限思想是建立导数无限逼近的极限思想是建立导数概念、用导数定义求概念、用导数定义求 函数的导数的基函数的导数的基本思想,丢掉极限思想就无法理解导本思想,丢掉极限思想就无法理解导 数概念。数概念。课堂练习课堂练习

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁