《《概率论与数理统计及其应用》课后答案(浙江大学 盛骤.pdf》由会员分享,可在线阅读,更多相关《《概率论与数理统计及其应用》课后答案(浙江大学 盛骤.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章 课后答案【khdaw_lxywyl】1、k=1,2,4.04.011kkYP2、用 个阀门开表示第iAi )()()()()()(032321321APAPAPAPAPAAAPXP 072.0)2.02.02.02.0(2.0 23213218.02.0)04.02.02.0(8.0)(1AAAAAAPXP 416.0 512.08.0)(23321AAAPXP3、2.0,15 bXkkkCkXP15158.02.0 k=0,1,2,15 (1)2501.08.02.03123315CXP(2)8329.08.02.08.02.01214115150015CCXP(3)6129.08.
2、02.08.02.08.02.031123315132215141115CCCXP(4)0611.08.02.015501515kkkkCXP4、用X表示5个元件中正常工作的个数 9914.09.01.09.01.09.0)3(54452335CCXP5、设X=件产品的次品数8000 则Xb(8000,0.001)由于n很大,P很小,所以利用)8(近似地X 3134.0!87608kkkeXP 6、(1)X(10)0487.09513.01!1011511515010kkkeXPXP (2)X()!01010210eXPXP 210 XP 21e 7.02ln 1558.08442.01!7.
3、01112107.0kkkeXPXP 或2ln2121!12ln21110122lneXPXPXP 7、)1()2(X 1353.0!020202eeXP )2(00145.0)1()(24245eeCp )3(502)!2(kkkep 8、(1)由33)(1103102kxkdxkxdxxf 3k(2)271333103310231xdxxdxxfXP(3)64764181321412141321412xdxxXP(4)271927813)(321323132232xdxxdxxfXP 9、方程,则 有实根04522XXtt0.)45(4)2(2XX 得 14XX或 有实根的概率 937.0
4、003.0003.0141042102dxxdxxXXP10、)1(005.01|10012001102002001022eedxexXPxx)2(52XP0|100200525220020052222eedxexxx 25158.0202620|26200202002622eeXPXPXXP)3(11、解:(1)275271942789827194491)(12132121xxdxxdxxfXP(2)Yb(10,275)kkkCkYP10102722275 k=0,1,2,10(3)2998.02722275282210CYP 1012YPYPYP 5778.0272227527222751
5、91110100210CC 12(1)由 10012.02.01dycydydyyf 24.0)22.0(2.010201cycyy 2.1c 其它0102.12.0012.0yyyyf 12.12.0102.12.02.0012.010)()(100011ydyyydyydyydtydtdttfyFyyyyY 11102.02.06.0012.02.0102yyyyyyy 25.02.05.06.05.02.02.005.05.002FFYP 774.01.06.01.02.02.011.011.02FYP 55.05.06.05.02.02.015.015.02FYP 7106.0774.
6、055.01.05.01.01.0,5.01.05.0YPYPYPYYPYYP(2)41428812081002200 xxdttdtxdtxdttfxFxxx4142162081002xxxxxx 167811691331FFXP 16933FXP 9716916733131XPXPXXP 13、解:111,nnjYiXP njiji,,2,1,0,iYiXP当n=3时,(X,Y)联合分布律为 Y X 1 2 3 1 0 1/6 1/6 2 1/6 0 1/6 3 1/6 1/6 0 14、,)1(,12.01,1YXP0,011,10,11,0YXP008.010.0YXPYXPYXPYX
7、P42.020.004.)2(90.010.010,01YXP)3(2,21,10,0YXPYXPYXPYXP 60.030.020.010.0 0,21,12,02YXPYXPYXPYXP 28.002.020.006.0 15、88104020042ceecdxdycedxxfyxyx 8c 40402042228,2eeedyedxdxdyyxfXPyxyxx D:xyx00yxdxdyyxfYXP,dxeedyedxxyxxyx0402042028 0622xee02623231xxxeedx D:xyx1010dyedxYXPxyx10421081 10422101042222dxe
8、edxeexxxyx 22104221eeexx 16、(1)61)2(1022dxxxs,其他,0),(,6),(Gyxyxf (2)其他,010,36)(2222xxdyxfxxX 其他,0121),1(66210),2(66),(12yyyYyydxyyydxyxf 17、(1)Y X 0 1 2 PX=xi0 0.10 0.08 0.060.24 1 0.04 0.20 0.140.38 2 0.02 0.06 0.300.38 PY=yi0.16 0.34 0.501(2)000,xxdyedyyxfxfxyX 000 xxex 000,0yydxedxyxfyfyyY D:yxx0
9、或:yxy00000yyyey 22、(1)Y1 Y2-1 0 1-1 4222 12 4222 0 12 21 12 1 4222 12 4222 且 61,10,01,121212121YYPYYPYYPYYP 12234142222 (2)10.00,0YXP 0384.000YPXP又 0,0YXP00YPXP X与Y不相互独立 23、1,0UX 其它02108yyyfY 且 X 与 Y 相互独立 则 其它0210,108,yxyyfxfyxfYX D:1210 xyy 32|)384()8(8210322102yydyyyydxdyYXPyx 24 X-2-1 01 3 kp 51
10、61 51151301112 XY5 2 12 10 Y 1 2 5 10kp 51 15161 51 3011即 Y 1 2 5 10 kp 51 307 51 301125、U=|X|,当0)|(|)()(0yXPyYPyFyU时,1)(2)()()()|(|)()(0yyFyFyXyPyXPyYPyFyXXU时,当故 0,00,2)(|22yyeyfXUyU的概率概率密度函数为 26、(1)XY,当0)()()(0yXPyYPyFyY时,)()()()()(022yFyXPyXPyYPyFyXY 时,当 故 0,00,2)(2yyyeyfXYyY的概率概率密度函数为(2))21(XY,当
11、0)21()()(0yXPyYPyFyY时,1)(1)12()12()21()()(01yFyyFyXPyXPyYPyFyYXY时,当时,当 故 其他的概率概率密度函数为,001,21)(21yyfXYY (3)2XY,当 0)()()(02yXPyYPyFyY时,)()()()()()(02yFyFyXyPyXPyYPyFyXXY时,当 故 0,00,21)(22yyeyyfXYyY的概率概率密度函数为 27、其它0201381xxxfX 4,02,02xyx 当y时,0 0yFY 40 y yXyPyXPyFY2 yyyxdxxdxxf01381 4y 1138120dxxyXyPyFY
12、时当4,0yy 4,0040211381yyyyyyFyfYY 其它040161163yyyfY 28、因为X 与 Y相互独立,且服从正态分布),0(2N 2222221)()(),(yxYXeyfxfyxf 由知,22YXZ 0)(0zfzZ时,当 时,当0z xxxzxzZzF2222)(2222221yxedydx=2222220202121zrzedrrde 其他,00,)()2(222zezzfzZ 29、其他,011,21)(xxfX )1arctan()1(arctan(21)1(21)()()(112zzdyydyyfyzfzfzzYXZ 30、0)(0zfzZ时,当 时当0z
13、2)()()(2302)(zedyyeedyyfyzfzfzyzyzYXZ 31、,其他,010,1)(xxfX其他,010,1)(yyfY 其他,021,210,)()()(110zzYXZzzdyzzdydyyfyzfzf32 解(1)000300023,3203xxexxdyedyyxfxfxxX 其它其它0202102023,03yydxedxyxfyfxY(2)01000300303xexxdtexdttfxFxxtxXX 21202100212021000yyyyyydtydttfyFyyYY 21201210033zezzezZz ZFZFZYXPZFYX,maxmax(3)21
14、1121maxmaxFFZP 21121121233ee 233412141ee 33、(1)其他率密度为)上服从均匀分布,概,在(,00,1)(10lxlxfXX (2)两个小段均服从,上的均匀分布),0(l其他,010,1)(1xlxfX ,),min(21XXY 2)1(1)(lyyFY 其他,00,)(2)(2lylylyfY 34、(1)U 的可能取值是 0,1,2,3 12012,31,30,33120292,12,02,21,20,22321,10,11,011210,00YXPYXPYXPUPYXPYXPYXPYXPYXPUPYXPYXPyXPUPYXPUP U 0 1 2 3 P 121 32 12029 1201(2)V 的可能取值为 0,1,2 0240131,31,22,11,1140270,30,20,12,01,00,00VPYXPYXPYXPYXPVPYXPYXPYXPYXPYXPYXPVP V 0 1 2 P 4027 4013 0(3)W 的可能取值是 0,1,2,3,4,5 0541212,11,20,331252,01,10,221251,00,111210,00WPWPYXPYXPYXPWPYXPYXPYXPWPYXPYXPWPYXPWP W 0 1 2 3 P 121 125 125 121