《羊群行为加剧股票价格波动吗.pdf》由会员分享,可在线阅读,更多相关《羊群行为加剧股票价格波动吗.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、?34?6?Vol.34,No.62014?6?Systems Engineering Theory&PracticeJune,2014?:1000-6788(2014)06-1361-08?:F830?:A?1,?1,?2,?3(1.?,?100083;2.?,?100191;3.Department of Economics,University of California,San Diego,La Jolla,CA 92093)?,?.?,?,?,?.?,?,?;?,?,?,?;?,?,?.?;?;?Does herd behavior increase stock price vola
2、tility?LIU Xiang-dong1,LIU Cheng1,LIU Shan-cun2,LU Jia-jun3(1.Dongling School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;2.School of Economics and Management,Beihang University,Beijing 100191,China;3.Department of Economics,Universityof California,S
3、an Diego,La Jolla,CA 92093,USA)Abstract Research results have even given the opposite conclusions on whether herd behavior increasestock price volatility.Assume that the change of view for traders buying or selling is mainly affected bytheir cognitive ability for the basic value of stock and other t
4、raders behaviors.This paper constructs amathematical model describing the change of market average investment attitude and stock prices,andanalyzes the stability of the model by using the related theory of discrete dynamic system,and defines thedegree of herding behavior according to whether the fin
5、ancial market is stable.The results indicate that:in mild herding effect interval,stock prices accordingly present periodic micro-amplitude fluctuations;inmoderate herding effect interval,after experiencing a period of damping volatility,stock prices convergenceto equilibrium,and there exists an opt
6、imal degree of herding behavior which encourages the stock price toapproach equilibrium in the fastest speed;in severe herding effect interval,stock prices irrationally sharplyfluctuate in large amplitudes which can lead to severe stock market bubble and the financial crisis.Keywords herd behavior;s
7、tock price volatility;stability of financial market1?,?.?,?,?.?,?.?,?;?,?.?:2012-08-09?:?(71173012,71371023);?(2013M540855)?:?(1985),?,?,?,?,?:?;?(1967),?,?,?,?,?:?;?(1964),?,?,?,?,?:?;?(1990),?,?,?,?:?.1362?34?,?.?.?,Scharfstein?1?,?()?,?.Lux2?,?,?,?,?.Avery?3?,?,?.?,?4?,?“?”,?.?5?1999?2003?,?,?,?.
8、?6?2001?12?2004?3?,?,?.?,?,?.?,?,?.?,?.Lakonishok?7?,?,?,?,?.Wermers8?1975?1994?,?,?,?,?.?9?GARCH?,?,?,?.?,?,?.?,?,?,?:?Christie?10?Chang?11?,?12,?13?.?,?,?,?(?).?,?.?,?.?,?.?,?,?.?14?Agent?,?,?.?,?,?,?15.?,?,?16.?,?,?,?.?,?,?,?;?,?,?.?,?.?Lux2,17?,?,?,?6?,?:?1363?.?,?,?,?;?,?;?,?.?,?,?,?,?;?,?,?.?,
9、?:?,?;?,?,?.?:?,?,?,?.2?Lux2,17?,?,?n?.?t?,?i?x(i)t,?i?1?,?x(i)t=1;?i?1?,?x(i)t=1.?,?,?.?,?Xt=?ni=1x(i)t/n.?,?t,?Xt(1,1).?Xt 0,?,?Xt 0?.?(5)?(7),?Xt+1=Xt+v?erXt+(mPt)/v)+erXt(mPt)/v)+?vXt?erXt+(mPt)/v)+erXt(mPt)/v)+?Pt+1=Pt+arctan(Xt+1)(8)3?(8)?.?E=(X,P)?(8)?,?X,P?0=v?erXt+(mPt)/v)+erXt(mPt)/v)+?vXt
10、?erXt+(mPt)/v)+erXt(mPt)/v)+?0=arctan(Xt+1)(9)?Pt?,?.?,?(8)?E=(X,P)=(0,m).?(8)?E=(X,P)?Jacobi?J=?1+2v(r 1)e+2v(r 1)e2e1 2e?(10)?det(J)?J?,tr(J)?J?,?(10)?det(J)=1+2v(r 1)e,tr(J)=1+v(r 1)e e?,?(8)?1 tr(J)+det(J)=2e 01+tr(J)+det(J)=2+2v(r 1)e e 01 det(J)=2v(r 1)e 0(11)?,?,?(11)?,?,(11)?2+2v(r 1)e e 02v
11、(r 1)e 0(12)?(12)?,?E=(X,P)?:?v=e22(r1)e,?Neimark Sacker?r1=0.?1?(8)?,?.?,?E=(X,P),?,?,?.?,?(12)?1 2 e2ve r 1(13)?(13)?,?,?.?,?,?.?:?(8)?,?,?(?,?,?.)?.?(13)?,?(8)?,?.?,?.?,?(8)?,?6?,?:?1365?,?,?,?.4?r?.?,?(X0,P0)?r?,?1?.Flip分叉曲线分叉曲线?稳定区域?1?(8)?1?m?10v?0.5?10?0.3?0.1?1?,?P=m=10?,?E=(X,P)=(0,10).?,?.?
12、,?,?.?,?,?,?.?,?(X0,P0)=(0.05,10.1).4.1?,?,?(13)?,?0.39 r 1.?,?;?0.39?,?1?.?,?,?;?,?,?,?,?;?,?.?,?2?(a)?,?r=0.01?(?),?,?.?(a)?.?,?,?,?,?,?,?,?,?,?.?,?r=0.2?,?2?(b)?,?(a)?,?.?,?.?,?.0510152025303540459.59.79.910.110.310.5tr=0.01Pt(a)0510152025303540459.59.79.910.110.310.5tr=0.2Pt(b)?2?r=0.01,0.2?,?13
13、66?34?,?.?3?(a)?(b)?,?r=0.4?r=0.95?,?,?.?(a)?,?(b)?,?,?.?(b)?r=0.95,?r=1.?,?,?.03060901201509.99.949.9810.0210.0610.1tr=0.4Pt(a)03060901201501802109.859.99.951010.0510.110.15tr=0.95Pt(b)?3?r?0.4?0.95?,?r?1?,?,?.?,?r?,?.?,?.?Kaizoji19,Foroni?20?.?,?,?,?(?4?(a)?(b)?),?.?,?,?,?.030609012015088.599.5101
14、0.51111.512tr=1.1Pt(a)030609012015018021088.599.51010.51111.512tr=1.5Pt(b)?4?r?1.1?1.5?,?4.2?r?(0.39,1)?,?,?.?3?(a)?(b)?,?.?,?,?,?,?.?,?,?,?.?,?2122?,?,?.?.?,?,?r=0.42?0.52?0.62?0.75?0.90?,?.?5?(a)?(b)?,?,?36?18?22?30?75?.?,?,?.?,?5?.?,?,?,?.?,?.?6?,?:?13674.3?,?.?,?.?2?5?,?.?,?,?;?,?,?.?,?,?2?5?,?.
15、?,?,?.?,?,?,?,?.?,?,?,?(?6?).0510152025303540459.99.949.9810.0210.0610.1tr=0.42r=0.52r=0.62Pt(a)01020304050607080909.99.949.9810.0210.0610.1tr=0.75r=0.90Pt(b)?5?r?0.42?0.52?0.62?0.75?0.90?,?榖0?6?,?,?,?.?,?,?;?,?,?,?.?,?,?,?.5?,?,?.?.?:?,?;?,?,?,?,?.?,?,?,?.?,?,?.?1368?34?,?,?.?1 Scharfstein D S,Stei
16、n J C.Herd behavior and investmentJ.American Economic Review,1990,80(3):465479.2 Lux T.Herd behavior,bubbles and crashesJ.Economic Journal,1995,105(5):881896.3 Avery C,Zemsky P.Multidimensional uncertainty and herd behavior in financial marketsJ.American EconomicReview,1998,88(4):724748.4?.?J.?,2001
17、(10):2631.Shi Donghui.Trading behavior and its impact on the securities investment fundJ.The Journal of WorldEconomy,2001(10):2631.5?,?.?J.?,2005,18(4):7785.Zhang Yu,Li Li.Trading behaviors of security investment funds and its impact on stock pricesJ.ManagementSciences in China,2005,18(4):7785.6?,?.
18、?J.?,2005(5):6070.Wu Xuchuan,He Peng.Analysis of herd behavior of Chinese open-end fundJ.Journal of Finance,2005(5):6070.7 Lakonishok J,Shleifer A.Vishny R W.The impact of institutional trading on stock priceJ.Journal of FinancialEconomics,1992,32(1):2343.8 Wermers R.Mutual fund herding and the impa
19、ct on stock pricesJ.Journal of Finance,1999,54(2):581622.9?,?,?.?J.?,2008(9):143151.Sheng Junfeng,Deng Yong,Tang Dajie.The market effect of institute investors in ChinaJ.Journal of Finance,2008(9):143151.10 Christie W G,Huang R D.Following the pied piper:Do individual returns herd around the marketJ
20、?FinancialAnalysts Journal,1995,51(4):3137.11 Chang E C,Cheng J W,Khorana A.An examination of herd behavior in equity markets:An internationalperspectiveJ.Journal of Banking&Finance,2000,24(10):16511679.12?,?.?J.?,2001(11):2127.Song Jun,Wu Chongfeng.Research on herd behavior of financial market base
21、d on the dispersityJ.EconomicResearch Journal,2001(11):2127.13?,?.?CAPM?J.?,2002(2):6469.Sun Peiyuan,Shi Donghui.Research on herd behavior of Chinese stock market based on CAPM Discussionwith Mr Song Jun and Mr Wu Chong-fengJ.Economic Research Journal,2002(2):6469.14?,?,?,?.?J.?,2010(9):119128.Chen
22、Ying,Yuan Jianhui,Li Xindan,et al.Research on collaborative herding behavior and market volatility:Based on computational experimentsJ.Journal of Management Sciences in China,2010(9):119128.15?,?,?.?J.?,2011,31(5):855862.Yuan Jianhui,Deng Rui,Cao Guangxi.Imitating herding behavior:Based on computati
23、onal experimentsJ.Systems Engineering Theory&Practice,2011,31(5):855862.16?,?,?,?.?J.?,2011,31(5):805812.Liu Haifei,Yao Shun,Xiao Binqing,et al.Stock market herd behavioral mechanism and its impact based oncomputational experimentJ.Systems Engineering Theory&Practice,2011,31(5):805812.17 Lux T.The s
24、ocio-economic dynamics of speculative markets:Interacting agents,chaos,and the fat tails of returndistributionsJ.Journal of Economic Behavior and Organization,1998,33(2):143165.18 Weidlich W,Braun M.The master equation approach to nonlinear economicsJ.Journal of Evolutionary Eco-nomics,1992,2(3):233
25、265.19 Kaizoji T.Speculative bubbles and crashes in stock markets:An interacting agent model of speculative activityJ.Physica A,2000,287(34):493506.20 Foroni I,Agliari A.Complex price dynamics in a financial market with imitationJ.Journal of ComputationalEconomics,2008,32(12):2136.21?,?,?.?J.?,2009,
26、27(6):2330.Fu Qiang,Yuan Chen,Liu Lian.A nonlinear dynamical model of asset prices on the transition probabilitiesbetween buyers and sellers and its empirical researchJ.Systems Engineering,2009,27(6):2330.22?,?.“T+1”?J.?,2011,14(3):8396.Yuan Chen,Fu Qiang.Nonlinear dynamical model of security prices under“T+1”trading mechanism and itsempirical testJ.Journal of Management Sciences in China,2011,14(3):8396.