模型参考自适应控制.pptx

上传人:莉*** 文档编号:74453496 上传时间:2023-02-26 格式:PPTX 页数:17 大小:220.08KB
返回 下载 相关 举报
模型参考自适应控制.pptx_第1页
第1页 / 共17页
模型参考自适应控制.pptx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《模型参考自适应控制.pptx》由会员分享,可在线阅读,更多相关《模型参考自适应控制.pptx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、会计学1模型参考自适应控制模型参考自适应控制两边对t求导:由r(t)到e(t)的开环传函Ge(s)为:即e(t)所满足的微分方程为:微分算子:两边对Kc求导:(1)第1页/共17页此自适应规律只需要一个积分器和一个乘法器。比较可得:代入(1)得:缺点:不能保证稳定性,即e可能发散。第2页/共17页 设在t=0时,输入r(t)=R(阶跃),假定ym的动态响应比e的自适应调整过程快得多,则当时间充分长以后,ym取稳态值KmR,yp取稳态值Kc(0)KpR,此时输出的广义误差e满足:时,系统不稳定。例:参考模型:这时闭环自适应控制系统为:第3页/共17页n n三三 基于基于Lyapunov稳定性理论

2、的设稳定性理论的设计方法计方法n n对于设计一个控制系统来说对于设计一个控制系统来说,首要的目标是稳定首要的目标是稳定.n nMITMIT方法的最大的缺点是只考虑到优化输出误差和参数误差方法的最大的缺点是只考虑到优化输出误差和参数误差的某种正性指标函数及这些误差的收敛过程的某种正性指标函数及这些误差的收敛过程,而不能确保所而不能确保所设计的自适应控制系统闭环是全局渐近稳定的设计的自适应控制系统闭环是全局渐近稳定的n n上世纪上世纪6060年代中期年代中期,Parks,Parks提出了用李氏稳定性理论对提出了用李氏稳定性理论对MRASMRAS进行设计的方法进行设计的方法,确保了该类自适应系统的稳

3、定性确保了该类自适应系统的稳定性.第4页/共17页n n1 1 采用可调系统状态变量构成自适应规律的设计方法采用可调系统状态变量构成自适应规律的设计方法采用可调系统状态变量构成自适应规律的设计方法采用可调系统状态变量构成自适应规律的设计方法n n对一般多变量线性系统,可采用如图对一般多变量线性系统,可采用如图3 3所示的控制器结构。所示的控制器结构。第5页/共17页设所选定参考模型的状态方程为xm=Amxm+Bmr xm(0)=xm0 (1)其中Am为nn维稳定矩阵,Bm为nm维矩阵.所选定的参考模型(Am,Bm)一般为渐近稳定的,且其状态完全能控能观的.此外参考模型(Am,Bm)应体现对被控

4、系统的输出响应和性能指标的要求,如超调量、快速性、周期性、阻尼比、动态速降和通频带宽等指标可通过参考模型的选取来体现.实际上,参考模型体现对被控系统输出响应和性能指标的理想化要求.第6页/共17页n n被控系统的状态方程被控系统的状态方程n n xx=AxAx+BuBu x x (0)=x(0)=x0 0设系统的广义状态误差向量则现在问题为设计Kv和Kc,使得误差系统为渐近稳定。从而有第7页/共17页n n定义李雅普诺夫函数定义李雅普诺夫函数n n 其中,分别是 的第i列,P为对称正定矩阵,显然,V正定,而Am为稳定,故必存在有正定矩阵Q满足李亚普诺夫方程:代入上式有:第8页/共17页分别是向

5、量x,r的第i分量,如果我们选择即取则 为负定,从而广义误差系统为渐近稳定。第9页/共17页 这种方法要求所有状态可测,这对许多实际对象往往不现实,为此可采用按对象输入输出来直接设计自适应控制系统。其中一种为直接法直接法,它根据对象的输入输出来设计自适应控制器,从而来调节可调参数,使可调系统与给定参考模型匹配,另一种为间接法间接法,利用对象的输入输出设计一个自适应观测器,实时地给出对象未知参数和状态的估计,然后利用这些估计值再来设计自适应控制器,使对象输出能跟踪模型输出,或使其某一性能指标最优。n n2 2 采用受控对象输入输出构成自适应规律的设计方法采用受控对象输入输出构成自适应规律的设计方

6、法采用受控对象输入输出构成自适应规律的设计方法采用受控对象输入输出构成自适应规律的设计方法n n 系统结构如下页图系统结构如下页图系统结构如下页图系统结构如下页图4 4中所示。中所示。中所示。中所示。第10页/共17页n n设计任务设计任务:n n设计可调增益设计可调增益K Kc c的自适应规律的自适应规律,使得控制系统能够适应被使得控制系统能够适应被控对象时变或未知的开环增益控对象时变或未知的开环增益K Kp p,且被控系统的输出动态且被控系统的输出动态特性与参考模型相一致特性与参考模型相一致.第11页/共17页n n由图由图4,4,参考模型和参数可调被控系统的参考模型和参数可调被控系统的s

7、 s域表达式分别为域表达式分别为其中D(s)和N(s)分别为如下已知的n阶的稳定首一多项式和n-1阶多项式 q下面基于李氏稳定性理论,设计比例调节器的增益Kc的自适应规律.第12页/共17页n n首先定义如下广义误差首先定义如下广义误差 e e=y ymm-y yn n因此因此,误差误差e e的传递函数为的传递函数为其中增益误差K为K=Km-KcKp (4)q由式(3)可知,广义误差e满足如下微分方程e(n)+an-1e(n-1)+.+a0=Kbn-1r(n-1)+.+b0r (5)选择状态变量:可得其状态方程实现:第13页/共17页其中第14页/共17页n n如下定义正定李氏函数如下定义正定

8、李氏函数n n V V=x xT TPxPx+K K 2 20 (7)0 (7)n n式中式中P P为所选定的正定矩阵为所选定的正定矩阵,为大于零的实数为大于零的实数.n n对函数对函数V V求导可得求导可得 参考模型总是稳定的,A为稳定阵,因此总可以选择正定矩阵Q,使得 故若令 即可推出 负定。于是可得:第15页/共17页n n由上式可知由上式可知,该自适应规律除包含输出误差该自适应规律除包含输出误差e e之外之外,还包含它的还包含它的各阶微各阶微.n n对实际控制系统来说对实际控制系统来说,带有微分因素的控制规律对系统的带有微分因素的控制规律对系统的环境变化或扰动较敏感环境变化或扰动较敏感,容易引起系统的不稳定容易引起系统的不稳定,而且实而且实现纯微分环节也较困难现纯微分环节也较困难.n n因此因此,该自适应规律在具体实现上有一定困难该自适应规律在具体实现上有一定困难.n n为此,可在选择为此,可在选择P P矩阵时使矩阵时使P P满足满足PBPB=C CT T=0 0 0 0T T,n n 00此时就有此时就有第16页/共17页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁