中考数学总复习知识点总结手册.pdf

上传人:hg158****2095 文档编号:73491121 上传时间:2023-02-19 格式:PDF 页数:85 大小:4.19MB
返回 下载 相关 举报
中考数学总复习知识点总结手册.pdf_第1页
第1页 / 共85页
中考数学总复习知识点总结手册.pdf_第2页
第2页 / 共85页
点击查看更多>>
资源描述

《中考数学总复习知识点总结手册.pdf》由会员分享,可在线阅读,更多相关《中考数学总复习知识点总结手册.pdf(85页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初初中中数数学学总总复复习习知知识识点点总总结结20162016 年中考数学复习计划年中考数学复习计划.4一、第一轮复习 3-4 周.41、第一轮复习的形式:“梳理知识脉络,构建知识体系”-理解为主,做题为辅.41 目的:过三关.42 宗旨:知识系统化.42、第一轮复习应注意的问题.41 必须扎扎实实夯实基础.42 必须深钻教材,不能脱离课本.43 掌握基础知识,一定要从理解角度出发.4二、第二轮复习 3 周.41、第二轮复习的形式:“突出重点,综合提高”-练习专题化,专题规律化.41 目的:融会贯通考纲上的所有知识点.42 宗旨:建立数学思想,培养数学能力.52、第二轮复习应注意的问题.51

2、 专题的划分要合理.52 保证一定的习题量.53 注重多思考,并及时总结规律.5三、第三轮复习 2-3 周.51、第三轮复习的形式:“模拟训练,查缺补漏”.5目的:突破中考分数的非知识角度的障碍.52、第三轮复习应注意的问题.51 通过做模拟题进行查缺补漏.52 克服不良的考试习惯.53 总结适当的应试技巧.5第一章 实数.6考点一、实数的概念及分类3 分.6考点二、实数的倒数、相反数和绝对值3 分.6考点三、平方根、算数平方根和立方根310 分.6考点四、科学记数法和近似数36 分.6考点五、实数大小的比较3 分.7考点六、实数的运算做题的基础,分值相当大.7第二章 代数式.8考点一、整式的

3、有关概念3 分.8考点二、多项式11 分.8考点三、因式分解11 分.8考点四、分式810 分.9考点五、二次根式初中数学基础,分值很大.9第三章方程组.11考点一、一元一次方程的概念6 分.11考点二、一元二次方程6 分.11考点三、一元二次方程的解法10 分.11考点四、一元二次方程根的判别式3 分.11考点五、一元二次方程根与系数的关系3 分.11考点六、分式方程8 分.12考点七、二元一次方程组810 分.12第四章不等式组.13考点一、不等式的概念3 分.13考点二、不等式基本性质35 分.13考点三、一元一次不等式68 分.13考点四、一元一次不等式组8 分.13第五章统计初步与概

4、率初步.14考点一、平均数3 分.14考点二、统计学中的几个基本概念4 分.14考点三、众数、中位数35 分.14考点四、方差3 分.14考点五、频率分布6 分.15考点六、确定事件和随机事件3 分.15考点七、随机事件发生的可能性3 分.16考点八、概率的意义与表示方法56 分.16考点九、确定事件和随机事件的概率之间的关系3 分.16考点十、古典概型3 分.16考点十一、列表法求概率10 分.16考点十二、树状图法求概率10 分.16考点十三、利用频率估计概率8 分.16第六章一次函数与反比例函数.18考点一、平面直角坐标系3 分.18考点二、不同位置的点的坐标的特征3 分.18考点三、函

5、数及其相关概念38 分.18考点四、正比例函数和一次函数310 分.19考点五、反比例函数310 分.20第七章二次函数.22考点一、二次函数的概念和图像38 分.22考点二、二次函数的解析式1016 分.22考点三、二次函数的最值10 分.22考点四、二次函数的性质614 分.23补充:23第八章图形的初步认识.25考点一、直线、射线和线段3 分.25考点二、角3 分.25考点三、相交线3 分.26考点四、平行线38 分.26考点五、命题、定理、证明38 分.27考点六、投影与视图3 分.27第九章三角形.29考点一、三角形38 分.29考点二、全等三角形38 分.29考点三、等腰三角形81

6、0 分.30第十章四边形.32考点一、四边形的相关概念3 分.32考点二、平行四边形310 分.32考点三、矩形310 分.32考点四、菱形310 分.33考点五、正方形310 分.33考点六、梯形310 分.33第十一章解直角三角形.35考点一、直角三角形的性质35 分.35考点二、直角三角形的判定35 分.35考点三、锐角三角函数的概念38 分.35考点四、解直角三角形35.36第十二章圆.37考点一、圆的相关概念3 分.37考点二、弦、弧等与圆有关的定义3 分.37考点三、垂径定理及其推论3 分.37考点四、圆的对称性3 分.37考点五、弧、弦、弦心距、圆心角之间的关系定理3 分.37考

7、点六、圆周角定理及其推论38 分.37考点七、点和圆的位置关系3 分.38考点八、过三点的圆3 分.38考点九、反证法3 分.38考点十、直线与圆的位置关系35 分.38考点十一、切线的判定和性质38 分.38考点十二、切线长定理3 分.38考点十三、三角形的内切圆38 分.38考点十四、圆和圆的位置关系3 分.38考点十五、正多边形和圆3 分.39考点十六、与正多边形有关的概念3 分.39考点十七、正多边形的对称性3 分.39考点十八、弧长和扇形面积38 分.39第十三章图形的变换.41考点一、平移35 分.41考点二、轴对称35 分.41考点三、旋转38 分.41考点四、中心对称3 分.4

8、1第十四章图形的相似.42考点一、比例线段3 分.42考点二、平行线分线段成比例定理35 分.42考点三、相似三角形38 分.42初中数学总复习知识点.中考数学常用公式及性质.12乘法与因式分解.幂的运算性质.34567891011121314151617181920212223二次根式.三角不等式.某些数列前 n 项之和.一元二次方程.一次函数.反比例函数.二次函数.统计初步.频率与概率.锐角三角形.正余弦定理.三角函数公式.平面直角坐标系中的有关知识.多边形内角和公式.平行线段成比例定理.直角三角形中的射影定理.圆的有关性质.三角形的内心与外心.弦切角定理及其推论.相交弦定理、割线定理和切

9、割线定理.面积公式.20162016 年中考数学复习计划年中考数学复习计划一、第一轮复习一、第一轮复习 3-43-4 周周1 1、第一轮复习的形式:、第一轮复习的形式:“梳理知识脉络“梳理知识脉络,构建知识体系”构建知识体系”-理解为主理解为主,做题为辅做题为辅1 1 目的:过三关目的:过三关过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念定义、公式、定理,推论性质,法则等;过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法韦达定理,待定系数法,构造法,反证法等;过基本技能关;应该做到:无论是对典型题、基本题,还是对综合

10、题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法;2 2 宗旨:知识系统化宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构;数与代数分为 3 个大单元:数与式、方程与不等式、函数;空间和图形分为 3 个大单元:几何基本概念线与角,平面图形,立体图形统计与概率分为 2 个大单元:统计与概率2 2、第一轮复习应注意的问题、第一轮复习应注意的问题1 1 必须扎扎实实夯实基础必须扎扎实实夯实基础中考试题按难:中:易=1:2:7 的比例,基础分占总分的 70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速;2

11、2 必须深钻教材必须深钻教材,不能脱离课本不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造;3 3 掌握基础知识掌握基础知识,一定要从理解角度出发一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通;相对而言,“题海战术”在这个阶段是不适用的;二、第二轮复习二、第二轮复习 3 3 周周1 1、第二轮复习的形式:、第二轮复习的形式:“突出重点“突出重点,综合提高”综合提高”-练习专题化练习专题化,专题规专题规律化律化1 1 目的:融会贯通考纲上的所有知识点目的:融会贯通考纲上的所有知识点进行专题化训练将

12、所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习;突出重点,难点和热点的内容在专题训练的基础上,要突出重点,抓住热点,突破难点;按照中考的出题规律,每年的重点、难点和热点内容都大同小异,;2 2 宗旨:建立数学思想宗旨:建立数学思想,培养数学能力培养数学能力在对初中阶段所有数学基本知识的理解掌握前提下,应该努力做到:建立函数与方程的思想从函数的角度,去理解数,函数,方程、代数式以及跟图像的对应转化关系;提高数学阅读分析的能力学会用数学语言描述问题,并能还原问题的数学描述;2 2、第二轮复习应注意的问题、第二轮复习应注意的问题1 1 专题的

13、划分要合理专题的划分要合理专题的划分标准为相关知识点的联系紧密程度;专题要有代表性和针对性,切忌面面俱到;始终围绕热点、难点、重点特别是中考必考内容选定专题;2 2 保证一定的习题量保证一定的习题量所谓“熟能生巧”,在这个阶段,所要做的就是将关键知识点进行综合、巩固、完善、提高;要尽可能多的接触各类典型题;3 3 注重多思考注重多思考,并及时总结规律并及时总结规律每个专题内的知识点具有必然的紧密联系,不同专题之间的知识点同样会发生关联融合,要注重解题后的反思,总结规律;三、第三轮复习三、第三轮复习 2-32-3 周周1 1、第三轮复习的形式:、第三轮复习的形式:“模拟训练“模拟训练,查缺补漏”

14、查缺补漏”目的:突破中考分数的非知识角度的障碍目的:突破中考分数的非知识角度的障碍研究历年中考真题,选择含金量高的模拟题分析历年中考题,对考点的掌握做到心中有数;选择梯度设计合理,立足中考又稍高于中考难度的模拟题来做;调整自己的心里状态考试的成绩绝不仅仅取决于对知识点的掌握,在真正的考场上,心理状态和心里素质会带来很大的影响,所以在模拟训练时,一定要严格按照真正中考的时间以及相关要求来训练;2 2、第三轮复习应注意的问题、第三轮复习应注意的问题1 1 通过做模拟题进行查缺补漏通过做模拟题进行查缺补漏中考大纲要求掌握的知识点可谓众多,在经过前两轮的复习后,最后需要用做模拟题的方式来检查是否有遗漏

15、生疏的知识点;2 2 克服不良的考试习惯克服不良的考试习惯中考考题都有相应的判分规则,要按照判分规则去优化答题思路和步骤,必须避免因为“审题不仔细,凭印象答题以及答题不规范”等原因造成的失分;3 3 总结适当的应试技巧总结适当的应试技巧在实际的考试过程中,完成一道题目并不一定非要按照从知识点的应用角度出发;针对不少典型题,都有相应的解题技巧,既节约了做题时间,还保证了结果正确;第一章第一章 实数实数考点一、实数的概念及分类考点一、实数的概念及分类3 3 分分1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限

16、不循环”这一时之,归纳起来有四类:1 开方开不尽的数,如7,32等;2 有特定意义的数,如圆周率,或化简后含有的数,如3 有特定结构的数,如 0.1010010001等;4 某些三角函数,如 sin60o等+8 等;3考点二、实数的倒数、相反数和绝对值考点二、实数的倒数、相反数和绝对值3 3 分分1、相反数实数与它的相反数时一对数只有符号不同的两个数叫做互为相反数,零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立;2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0;零的绝对值时它本身,也可看成

17、它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0;正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小;3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立;倒数等于本身的数是1 和-1;零没有倒数;考点三、平方根、算数平方根和立方根考点三、平方根、算数平方根和立方根3 31010 分分1、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根或二次方跟;一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根;正数 a 的平方根记做“2、算术平方根正数 a 的正的平方根叫做a 的算术平方根,记作“a”;正数和零的算术平方根都只有一个,零的

18、算术平方根是零;a a0a”;a 0a2 a;注意a的双重非负性:-a a0a03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根或 a 的三次方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;注意:3 a 3a,这说明三次根号内的负号可以移到根号外面;考点四、科学记数法和近似数考点四、科学记数法和近似数3 36 6 分分1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字;2、科学记数法把一个数写做 a10的形式,其中1 a 10,n 是整数,这种记数法叫做科学记

19、数法;n考点五、实数大小的比较考点五、实数大小的比较3 3 分分1、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,要注意上述规定的三要素缺一不可;解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用;2、实数大小比较的几种常用方法1 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大;2 求差比较:设 a、b 是实数,a b 0 a b,a b 0 a b,ab 0 a b3 求商比较法:设 a、b 是两正实数,ab1 a b;ab1 a b;ab1ab;4 绝对值比较法:设a、b 是两负实数,则a b a b;5 平方法:设 a、b 是两负实数,则a2

20、b2 a b;考点六、实数的运算考点六、实数的运算做题的基础做题的基础,分值相当大分值相当大1、加法交换律a b b a2、加法结合律(a b)c a (b c)3、乘法交换律ab ba4、乘法结合律(ab)c a(bc)5、乘法对加法的分配律a(b c)ab ac6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的;第二章第二章 代数式代数式考点一、整式的有关概念考点一、整式的有关概念3 3 分分1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式;单独的一个数或一个字母也是代数式;2、单项式只含有数字与字母的积的代数式叫做单项式;注意:单项式是由系数、字

21、母、字母的指数构成的,其中系数不能用带分数表示,如 4a b,这种表示就是错213误的,应写成132a b;一个单项式中,所有字母的指数的和叫做这个单项式的次数;如5a3b2c是 6 次单项式;3考点二、多项式考点二、多项式1111 分分1、多项式几个单项式的和叫做多项式;其中每个单项式叫做这个多项式的项;多项式中不含字母的项叫做常数项;多项式中次数最高的项的次数,叫做这个多项式的次数;单项式和多项式统称整式;用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值;注意:1 求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;2 求代数式的值,有时求不出其字母的值,

22、需要利用技巧,“整体”代入;2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项;几个常数项也是同类项;3、去括号法则1 括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号;2 括号前是“”,把括号和它前面的“”号一起去掉,括号里各项都变号;4、整式的运算法则整式的加减法:1 去括号;2 合并同类项;整式的乘法:aaamnmn(m,n都是正整数)(a)amnnmn(m,n都是正整数)(ab)a b(n都是正整数)nn(a b)(a b)a b(a b)a 2ab b(a b)a 2ab b整式的除法:aaamnmn22222222(m,n都是正整数,a 0)注意

23、:1 单项式乘单项式的结果仍然是单项式;2 单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;3 计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号;4 多项式与多项式相乘的展开式中,有同类项的要合并同类项;5 公式中的字母可以表示数,也可以表示单项式或多项式;6a 1(a 0);a0p1(a 0,p为正整数)pa7 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的;考点三、因式分解考点三、因式分解1111 分分1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也

24、叫做把这个多项式分解因式;2、因式分解的常用方法1 提公因式法:ab ac a(b c)2 运用公式法:a b(a b)(a b)22a 2ab b (a b)a 2ab b (a b)3 分组分解法:ac ad bc bd a(c d)b(c d)(a b)(c d)4 十字相乘法:a(p q)a pq(a p)(a q)22222223、因式分解的一般步骤:1 如果多项式的各项有公因式,那么先提取公因式;2 在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2 项式可以尝试运用公式法分解因式;3 项式可以尝试运用公式法、十字相乘法分解因式;4 项式及 4 项式以上的可以尝试分

25、组分解法分解因式3 分解因式必须分解到每一个因式都不能再分解为止;考点四、分式考点四、分式810810 分分1、分式的概念一般地,用 A、B 表示两个整式,AB 就可以表示成AA的形式,如果 B 中含有字母,式子就叫做分式;其中,A 叫BB做分式的分子,B 叫做分式的分母;分式和整式通称为有理式;2、分式的性质1 分式的基本性质:分式的分子和分母都乘以或除以同一个不等于零的整式,分式的值不变;2 分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;3、分式的运算法则acac acadad;bdbd bdbcbcanan()n(n为整数);bbaba b;cccac

26、ad bcbdbd考点五、二次根式考点五、二次根式初中数学基础初中数学基础,分值很大分值很大1、二次根式式子a(a 0)叫做二次根式,二次根式必须满足:含有二次根号“2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式;化二次根式为最简二次根式的方法和步骤:1 如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简;2 如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来;3、同类二次根式几个二次根式化成最简二次根式以后,如果被开

27、方数相同,这几个二次根式叫做同类二次根式;4、二次根式的性质21(a)a(a 0)”;被开方数 a 必须是非负数;a(a 0)2a a 2 a(a 0)3ab 4a b(a 0,b 0)aa(a 0,b 0)bb5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号;第三章第三章方程组方程组考点一、一元一次方程的概念考点一、一元一次方程的概念6 6 分分1、方程含有未知数的等式叫做方程;2、方程的解能使方程两边相等的未知数的值叫做方程的解;3、等式的性质1 等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式;2 等式的两

28、边都乘以或除以同一个数除数不能是零,所得结果仍是等式;4、一元一次方程只 含 有 一 个 未 知 数,并 且 未 知 数 的 最 高 次 数 是 1 的 整 式 方 程 叫 做 一 元 一 次 方 程,其 中 方 程ax b (0 x为未知数,a 0)叫做一元一次方程的标准形式,a 是未知数 x 的系数,b 是常数项;考点二、一元二次方程考点二、一元二次方程6 6 分分1、一元二次方程含有一个未知数,并且未知数的最高次数是2 的整式方程叫做一元二次方程;2、一元二次方程的一般形式2ax2 bx c 0(a 0),它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中ax叫做二

29、次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项;考点三、一元二次方程的解法考点三、一元二次方程的解法1010 分分1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法;直接开平方法适用于解形如(x a)2 b的 一 元 二 次 方 程;根 据 平 方 根 的 定 义 可 知,xa是b的 平 方 根,当b 0时,x a b,x a b,当 b0k0b0K00 xy0 xy图像经过一、二、三象限,y 随 x 的增大而增大;图像经过一、三、四象限,y 随 x 的增大而增大;图像经过一、二、四象限,y 随 x 的增大而0 xy减小图像经过二

30、、三、四象限,y 随 x 的增大而b0 时,图像经过第一、三象限,y 随 x 的增大而增大;2 当 k0 时,y 随 x 的增大而增大2 当 k0图像yk(k 0)xk0 时,函数图像的两个分支分别在第一、三象限;在每个象限内,y随 x 的增大而减小;Oxx 的取值范围是 x0,y 的取值范围是 y0;当 k0y图像0 x1 抛物线开口向上,并向上无限延伸;性质x=bb4ac b22 对称轴是2a,顶点坐标是2a,4a;a0y0 x1 抛物线开口向下,并向下无限延伸;x=bb4ac b22 对称轴是2a,顶点坐标是2a,4a;3在对称轴的左侧,即当x时,y 随 x 的增大而增大,2ab时,y

31、随 x 的增大而增2ab大;在对称轴的右侧,即当 x时,y 随 x 的增大而2a3 在对称轴的左侧,即当 x0 时,抛物线开口向上a0 时,图像与 x 轴有两个交点;当=0 时,图像与 x 轴有一个交点;当0 时,图像与 x 轴没有交点;补充:补充:1、两点间距离公式当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法y如图:点 A 坐标为 x1,y1点 B 坐标为 x2,y2则 AB 间的距离,即线段 AB 的长度为x1 x22y1 y22A0 xB2、函数平移规律中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间左加右减、上加下减左加右减、上加

32、下减第八章第八章图形的初步认识图形的初步认识考点一、直线、射线和线段考点一、直线、射线和线段3 3 分分1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形;立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形;平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形;2、点、线、面、体1 几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形;线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;体:几何体也简称体;2 点动成线,线动成面,面动成体;3、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无

33、限延伸的;4、射线的概念直线上一点和它一旁的部分叫做射线;这个点叫做射线的端点;5、线段的概念直线上两个点和它们之间的部分叫做线段;这两个点叫做线段的端点;6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形;一个点可以用一个大写字母表示;一条直线可以用一个小写字母表示;一条射线可以用端点和射线上另一点来表示;一条线段可用它的端点的两个大写字母来表示;注意:注意:1 表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段;2 直线和射线无长度,线段有长度;3 直线无端点,射线有一个端点,线段有两个端点;4 点和直线的位置关系有线面两种:点在直线上,或者说直线经过这个点;点在

34、直线外,或者说直线不经过这个点;7、直线的性质1 直线公理:经过两个点有一条直线,并且只有一条直线;它可以简单地说成:过两点有且只有一条直线;2 过一点的直线有无数条;3 直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小;4 直线上有无穷多个点;5 两条不同的直线至多有一个公共点;8、线段的性质1 线段公理:所有连接两点的线中,线段最短;也可简单说成:两点之间线段最短;2 连接两点的线段的长度,叫做这两点的距离;3 线段的中点到两端点的距离相等;4 线段的大小关系和它们的长度的大小关系是一致的;9、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平

35、分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;考点二、角考点二、角3 3 分分1、角的相关概念有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边;当角的两边在一条直线上时,组成的角叫做平角;平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角;如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角;如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角;2、角的表示角可以用大写英文字母、阿

36、拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:用数字表示单独的角,如1,2,3 等;用小写的希腊字母表示单独的一个角,如,等;用一个大写英文字母表示一个独立在一个顶点处只有一个角的角,如B,C 等;用三个大写英文字母表示任一个角,如BAD,BAE,CAE 等;注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧;3、角的度量角的度量有如下规定:把一个平角 180 等分,每一份就是 1 度的角,单位是度,用“”表示,1 度记作“1”,n度记作“n”;把 1的角 60 等分,每一份叫做 1 分的角,1 分记作“1”;把 1 的角 60 等分,每一份叫做 1 秒的

37、角,1 秒记作“1”;1=60=60”4、角的性质1 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;2 角的大小可以度量,可以比较3 角可以参与运算;5、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线;角的平分线有下面的性质定理:1 角平分线上的点到这个角的两边的距离相等;2 到一个角的两边距离相等的点在这个角的平分线上;考点三、相交线考点三、相交线3 3 分分1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角;我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个

38、角叫做临补角;临补角互补,对顶角相等;直线 AB,CD 与 EF 相交或者说两条直线 AB,CD 被第三条直线 EF 所截,构成八个角;其中1 与5 这两个角分别在AB,CD 的上方,并且在 EF 的同侧,像这样位置相同的一对角叫做同位角;3 与5 这两个角都在 AB,CD 之间,并且在 EF 的异侧,像这样位置的两个角叫做内错角;3 与6 在直线 AB,CD 之间,并侧在 EF 的同侧,像这样位置的两个角叫做同旁内角;2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足;直线 AB,CD 互相垂直,记作“ABCD”

39、或“CDAB”,读作“AB 垂直于 CD”或“CD 垂直于 AB”;垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直;性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短;简称:垂线段最短;考点四、平行线考点四、平行线3838 分分1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线;平行用符号“”表示,如“ABCD”,读作“AB 平行于 CD”;同一平面内,两条直线的位置关系只有两种:相交或平行;注意:注意:1 平行线是无限延伸的,无论怎样延伸也不相交;2 当遇到线段、射线平行时,指的是线段、射线所在的直线平行;2、平行线公理及其推论平行公理:经过直线外一点,有且只有

40、一条直线与这条直线平行;推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行;3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行;简称:同位角相等,两直线平行;平行线的两条判定定理:1 两条直线被第三条直线所截,如果内错角相等,那么两直线平行;简称:内错角相等,两直线平行;2 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行;简称:同旁内角互补,两直线平行;补充平行线的判定方法:1 平行于同一条直线的两直线平行;2 垂直于同一条直线的两直线平行;3 平行线的定义;4、平行线的性质1 两直线平行,同位角相等;2 两直线平行,内错角相等;

41、3 两直线平行,同旁内角互补;考点五、命题、定理、证明考点五、命题、定理、证明3838 分分1、命题的概念判断一件事情的语句,叫做命题;理解:命题的定义包括两层含义:1 命题必须是个完整的句子;2 这个句子必须对某件事情做出判断;2、命题的分类按正确、错误与否分真命题正确的命题命题假命题错误的命题所谓正确的命题就是:如果题设成立,那么结论一定成立的命题;所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题;3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理;4、定理用推理的方法判断为正确的命题叫做定理;5、证明判断一个命题的正确性的推理过程叫做证明;6、证明的一般步骤1

42、根据题意,画出图形;2 根据题设、结论、结合图形,写出已知、求证;3 经过分析,找出由已知推出求证的途径,写出证明过程;考点六、投影与视图考点六、投影与视图3 3 分分1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影;平行投影:由平行光线如太阳光线形成的投影称为平行投影;中心投影:由同一点发出的光线所形成的投影称为中心投影;2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图;物体的三视图特指主视图、俯视图、左视图;主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图;左视图:在侧面

43、内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图;第九章第九章三角形三角形考点一、三角形考点一、三角形3838 分分1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形;组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角;2、三角形中的主要线段1 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线;2 在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线;3 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线简称三角形的高;3

44、、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性;三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状;4、三角形的特性与表示三角形有下面三个特性:1 三角形有三条线段2 三条线段不在同一直线上三角形是封闭图形3 首尾顺次相接三角形用符号“”表示,顶点是 A、B、C 的三角形记作“ABC”,读作“三角形 ABC”;5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形有一个角为直角的三角形三角形锐角三角形三个角都是锐角的三角形斜三角形钝角三角形有一个角为钝角的三角

45、形把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形;它是两条直角边相等的直角三角形;6、三角形的三边关系定理及推论1 三角形三边关系定理:三角形的两边之和大于第三边;推论:三角形的两边之差小于第三边;2 三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围;证明线段不等关系;7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180;推论:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的来两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角

46、;8、三角形的面积三角形的面积=1底高2考点二、全等三角形考点二、全等三角形3838 分分1、全等三角形的概念能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形;两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角;夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角;2、全等三角形的表示和性质全等用符号“”表示,读作“全等于”;如ABCDEF,读作“三角形 ABC 全等于三角形 DEF”;注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上;3、三角形全等的判定三角形全等的判定定理:1 边角边定理

47、:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS”2 角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA”3 边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS”;直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有 HL 定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL”4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换;全等变换包括一下三种:1 平移变换:把图形沿某条直线平行移动的变换叫做平移变换;2 对称变换:将图形沿某直线翻折1

48、80,这种变换叫做对称变换;3 旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换;考点三、等腰三角形考点三、等腰三角形810810 分分1、等腰三角形的性质1 等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角推论 1:等腰三角形顶角平分线平分底边并且垂直于底边;即等腰三角形的顶角平分线、底边上的中线、底边上的高重合;推论 2:等边三角形的各个角都相等,并且每个角都等于 60;2 等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于45等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角;等腰三角形的三边关系:设腰长为a,底边长为

49、 b,则ba2等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,则A=1802B,B=C=2、等腰三角形的判定等腰三角形的判定定理及推论:180A2定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等简称:等角对等边;这个判定定理常用于证明同一个三角形中的边相等;推论 1:三个角都相等的三角形是等边三角形推论 2:有一个角是 60的等腰三角形是等边三角形;推论 3:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半;等腰三角形的性质与判定等腰三角形性质1、等腰三角形底边上的中线垂直底边,平分顶角;中2、等腰三角形两腰上的中线相等,并且它们的交点与底边两线端点距

50、离相等;角1、等腰三角形顶角平分线垂直平分底边;平2、等腰三角形两底角平分线相等,并且它们的交点到底边两分端点的距离相等;线1、等腰三角形底边上的高平分顶角、平分底边;高2、等腰三角形两腰上的高相等,并且它们的交点和底边两端线点距离相等;角边等边对等角底的一半腰长周长的一半2、有两条高相等的三角形是等腰三角形;等角对等边两边相等的三角形是等腰三角形的对角,那么这个三角形是等腰三角形;腰三角形;1、如果一个三角形一边上的高平分这条边平分这条边2、三角形中两个角的平分线相等,那么这个三角形是等对边,那么这个三角形是等腰三角形;的对角,那么这个三角形是等腰三角形1、如果三角形的顶角平分线垂直于这个角

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁