《2019年中考数学真题试题(含解析)新版 新人教版新版 新人教版.doc》由会员分享,可在线阅读,更多相关《2019年中考数学真题试题(含解析)新版 新人教版新版 新人教版.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、12019 年中考数学真题试题年中考数学真题试题一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -3 的绝对值为( )A. -3 B. 3 C. D. 【答案】B【解析】根据绝对值的性质得:|-3|=3故选 B2. 小时候我们用肥皂水吹泡泡,其泡沫的厚度是约 0.000326 毫米,用科学记数法表示为( )A. 毫米 B. 毫米 C. 厘米 D. 厘米【答案】A【解析】分析:根据绝对值小于 1 的数可表示成为 a10-n的形式即可求解.详解:0.000326 毫米=毫米,故选:A.点睛:此题考查了科学记数法表示较小的数
2、,绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定3. 如图是正方体的表面展开图,则与“前”字相对的字是( )A. 认 B. 真 C. 复 D. 习【答案】B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真” 故选:B2点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.4. 下列计算正确的是( )A. B. C. D. 【答案】
3、D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可详解:A,a+a=2aa2,故该选项错误;B, (2a)3=8a36a3,故该选项错误C, (a1)2=a22a+1a21,故该选项错误;D,a3a=a2,故该选项正确,故选:D点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.5. 已知函数,则自变量 的取值范围是( )A. B. 且 C. D. 【答案】B【解析】分析:根据被开方数大于等于 0,分母不等于 0 列式计算即可得解详解:根据题意得:,解得:x1 且 x1故选:B
4、点睛:此题考查函数自变量的取值范围,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于 0.6. 已知: = ,则的值是( )A. B. C. 3 D. 3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果详解: = ,3= ,则=3,故选:C点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为 0.7. 已知的半径为,的半径为,圆心距,则与的位置关系是( )A.
5、外离 B. 外切 C. 相交 D. 内切【答案】C【解析】分析:由O1与O2的半径分别是 3cm 和 2cm,圆心距 O1O2=4cm,根据两圆位置关系与圆心距 d,两圆半径 R,r 的数量关系间的联系即可得出两圆位置关系详解:O1的半径为 3cm,O2的半径为 2cm,圆心距 O1O2为 4cm,又2+3=5,32=1,145,O1与O2的位置关系是相交故选:C点睛:此题考查圆与圆的位置关系,设两圆的半径分别是 R 和 r,且 Rr,圆心距为 P:外离,则PR+r;外切,则 P=R+r;相交,则 R-rPR+r;内切,则 P=R-r;内含,则 PR-r.8. 已知与相似,且相似比为,则与的面
6、积比A. B. C. D. 【答案】D【解析】分析:根据相似三角形面积的比等于相似比的平方解答详解:已知ABC 与A1B1C1相似,且相似比为 1:3,则ABC 与A1B1C1的面积比为 1:9,故选:D点睛:此题考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9. 为了了解内江市 2018 年中考数学学科各分数段成绩分布情况,从中抽取 400 名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )4A. 400B. 被抽取的 400 名考生C. 被抽取的 400 名考生的中考数学成绩D. 内江市 2018 年中考数学成绩【答案】C【解析】分析:直接利用样本的定义,从总体中
7、取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市 2018 年中考数学学科各分数段成绩分布情况,从中抽取 400 名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的 400 名考生的中考数学成绩故选:C点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.10. 在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定高度,则下图能反映弹簧秤的读数 (单位 )与铁块被提起的高度 (单位)之间的函数关系的大致图象是( )A. B. C. D. 【答案】C【解析】试题分析:因为小明用弹簧称将铁块 A 悬于盛
8、有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度则露出水面前读数 y 不变,出水面后 y 逐渐增大,离开水面后 y 不变5故选 C考点:函数的图象11. 如图,将矩形沿对角线折叠,点 落在 处,交于点 ,已知,则的度为( )A. B. C. D. 【答案】D【解析】分析:先利用互余求出FDB,再根据平行线的性质求出CBD,根据折叠求出FBD,然后利用三角形外角的性质计算DFE 即可详解:四边形 ABCD 为矩形,ADBC,ADC=90,FDB=90BDC=9062=28,ADBC,CBD=FDB=28,矩形 ABCD 沿对角线 BD 折叠,FBD=CBD=28,DFE=FBD+FD
9、B=28+28=56故选:D点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.12. 如图,在平面直角坐标系中,的顶点 在第一象限,点 、 的坐标分别为、,直线交 轴于点 ,若与关于点 成中心对称,则点的坐标为( )6A. B. C. D. 【答案】A【解析】分析:先求得直线 AB 解析式为 y=x1,即可得 P(0,1) ,再根据点 A 与点 A关于点 P 成中心对称,利用中点坐标公式,即可得到点 A的坐标.详解:点 B,C 的坐标分别为(2,1) , (6,1) ,BAC=90,AB=AC,ABC 是等腰直角三角形,A(4,3) ,设直
10、线 AB 解析式为 y=kx+b,则,解得,直线 AB 解析式为 y=x1,令 x=0,则 y=1,P(0,1) ,又点 A 与点 A关于点 P 成中心对称,点 P 为 AA的中点,设 A(m,n) ,则=0,=1,m=4,n=5,A(4,5) ,故选:A点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线 AB 的解析式是解题的关键.二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 分解因式:_【答案】ab(a+b) (ab) 【解析】分析:先提公因式 ab,再把剩余部分用平方差公式分解即可.7详解:a3bab3,=ab(a2b2) ,=ab(a+b)
11、(ab) 点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.14. 有五张卡片(形状、大小、质地都相同) ,上面分别画有下列图形:线段;正三角形;平行四边形;等腰梯形;圆将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是_【答案】【解析】分析:由五张卡片线段;正三角形;平行四边形;等腰梯形;圆中,既是轴对称图形,又是中心对称图形的,直接利用概率公式求解即可求得答案详解:五张卡片线段;正三角形;平行四边形;等腰梯形;圆中,既是轴对称图形,又是中心对称图形的,从中抽取一张,正面图形一定满足
12、既是轴对称图形,又是中心对称图形的概率是: 故答案为: 点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与情况总数之比.15. 关于 的一元二次方程有实数根,则 的取值范围是_【答案】k4【解析】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于 k 的不等式,求出 k 的取值范围即可详解:关于 x 的一元二次方程 x2+4xk=0 有实数根,=4241(k)=16+4k0,解得:k4故答案为:k4点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0 方程没有实数
13、根16. 已知,A、B、C、D是反比例函数y= (x0)图象上四个整数点(横、纵坐标均为整数) ,分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组8成四个橄榄形(阴影部分) ,则这四个橄榄形的面积总和是_(用含 的代数式表示) 【答案】510【解析】分析:通过观察可知每个橄榄形的阴影面积都是一个圆的面积的四分之一减去一个直角三角形的面积再乘以 2,分别计算这 5 个阴影部分的面积相加即可表示详解:A、B、C、D、E 是反比例函数 y= (x0)图象上五个整数点,x=1,y=8;x=2,y=4;x=4,y=2;x=8,y=1;一个顶点是 A、D
14、 的正方形的边长为 1,橄榄形的面积为:2;一个顶点是 B、C 的正方形的边长为 2,橄榄形的面积为:=2(2) ;这四个橄榄形的面积总和是:(2)+22(2)=510故答案为:510点睛:问题主要用过考查橄榄形的面积的计算来考查反比例函数图形的应用,关键是要分析出其图象特点,再结合性质作答.三、解答题 (本大题共 5 小题,共 44 分.解答应写出必要的文字说明或推理步骤.) 17. 计算:【答案】 【解析】分析:原式分别利用算术平方根、绝对值、平方、0 次幂以及负整数指数幂分别运算,最后再化9简合并即可.详解:原式=2+1214=+8点睛:本题考查了用算术平方根、绝对值、平方、0 次幂以及
15、负整数指数幂等知识点,熟练运用这些知识是解此题的关键.18. 如图,已知四边形是平行四边形,点 、 分别是、上的点,并且.求证:(1)(2)四边形是菱形【答案】(1)证明峥解析;(2)四边形 ABCD 是菱形【解析】分析:(1)首先根据平行四边形的性质得出A=C,进而利用全等三角形的判定得出即可;(2)根据菱形的判定得出即可 详解:(1)四边形 ABCD 是平行四边形,A=C在AED 与CFD 中,AEDCFD(ASA) ;(2)由(1)知,AEDCFD,则 AD=CD又四边形 ABCD 是平行四边形,四边形 ABCD 是菱形点睛:此题考查了菱形的判定, 全等三角形的判定与性质以及平行四边形的
16、性质,解题的关键是掌握相关的性质与定理.19. 为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率频数120.0510240.1030.24100.255660.15合计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的 , , ;(2)已知全区八年级共有 200 个班(平均每班 40 人),用这份试卷检测,108 分及以上为优秀,预计优秀的人数约为 ,72 分及以上为及格,预计及格的人数约为 ,及格的百分比约为 ;(3)补充完整频数分布直
17、方图.【答案】 (1)8、10、0.25;(2)1200 人、6800 人、85%;(3)补图见解析.【解析】分析:(1)根据第一组的频数和频率结合频率=,可求出总数,继而可分别得出 a、b、c 的值;(2)根据频率=的关系可分别求出各空的答案(3)根据(1)中 a、b 的值即可补全图形详解:(1)被调查的总人数为 20.05=40 人,a=400.2=8,b=40(2+4+8+10+6)=10,c=1040=0.25,11故答案为:8、10、0.25;(2)全区八年级学生总人数为 20040=8000 人,预计优秀的人数约为 80000.15=1200 人,预计及格的人数约为 8000(0.
18、2+0.25+0.25+0.15)=6800人,及格的百分比约为100%=85%,故答案为:1200 人、6800 人、85%;(3)补全频数分布直方图如下:点睛:本题考查频数(率)分布直方图, 频数(率)分布表,难度不大,解答本题的关键是掌握频率=20. 如图是某路灯在铅垂面内的示意图,灯柱的高为 11 米,灯杆与灯柱的夹角,路灯采用锥形灯罩,在地面上的照射区域长为 18 米,从 、 两处测得路灯 的仰角分别为 和 ,且,.求灯杆的长度.【答案】2 米【解析】分析:过点 B 作 BFCE,交 CE 于点 F,过点 A 作 AAGAF,交 BF 于点 G,则 FG=AC=11设BF=3x 知
19、EF=4x、DF=,由 DE=18 求得 x=4,据此知 BG=BF-GF=1,再求得BAG=BAC-CAG=30可得 AB=2BG=2详解:过点 B 作 BFCE,交 CE 于点 F,过点 A 作 AGAF,交 BF 于点 G,则 FG=AC=1112由题意得BDE=,tan= 设 BF=3x,则 EF=4x在 RtBDF 中,tanBDF=,DF=,DE=18, x+4x=18x=4BF=12,BG=BFGF=1211=1,BAC=120,BAG=BACCAG=12090=30AB=2BG=2,答:灯杆 AB 的长度为 2 米点睛:本题主要考查解直角三角形-仰角俯角问题,解题的关键是结合题
20、意构建直角三角形并熟练掌握三角函数的定义及其应用能力.21. 某商场计划购进 、 两种型号的手机,已知每部 型号手机的进价比每部 型号手机的多 500 元,每部 型号手机的售价是 2500 元,每部 型号手机的售价是 2100 元.(1)若商场用 500000 元共购进 型号手机 10 部, 型号手机 20 部.求 、 两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过 7.5 万元采购 、 两种型号的手机共 40 部,且 型号手机的数量不少于 型号手机数量的 2 倍.该商场有哪几种进货方式?13该商场选择哪种进货方式,获得的利润最大?【答案】 (1)A、B 两种型号的
21、手机每部进价各是 2000 元、1500 元;(2)有 4 种购机方案:方案一:A 种型号的手机购进 27 部,则 B 种型号的手机购进 13 部;方案二:A 种型号的手机购进 28 部,则 B 种型号的手机购进 12 部;方案三:A 种型号的手机购进 29 部,则 B 种型号的手机购进 11 部;方案四:A 种型号的手机购进 30 部,则 B 种型号的手机购进 10 部;购进 A 种型号的手机 27 部,购进 B 种型号的手机13 部时获利最大【解析】分析:(1)A、B 两种型号的手机每部进价各是 x 元、y 元,根据每部 型号手机的进价比每部型号手机的进价多 500 元以及商场用 5000
22、00 元共购进 型号手机 10 部, 型号手机 20 部列方程组,求出方程组的解即可得到结果;(2)设 A、B 两种型号的手机每部进价各是 x 元、y 元,根据话费的钱数不超过 7.5 万元以及 型号手机的数量不少于 型号手机数量的 2 倍,据此列不等式组,求出不等式组的解集的正整数解,即可确定出购机方案详解:(1)设 A、B 两种型号的手机每部进价各是 x 元、y 元,根据题意得:,解得:,答:A、B 两种型号的手机每部进价各是 2000 元、1500 元;(2)设 A 种型号的手机购进 a 部,则 B 种型号的手机购进(40a)部,根据题意得:,解得:a30,a 为解集内的正整数,a=27
23、,28,29,30,有 4 种购机方案:方案一:A 种型号的手机购进 27 部,则 B 种型号的手机购进 13 部;方案二:A 种型号的手机购进 28 部,则 B 种型号的手机购进 12 部;方案三:A 种型号的手机购进 29 部,则 B 种型号的手机购进 11 部;方案四:A 种型号的手机购进 30 部,则 B 种型号的手机购进 10 部;设 A 种型号的手机购进 a 部时,获得的利润为 w 元根据题意,得 w=500a+600(40a)=100a+24000,14100,w 随 a 的增大而减小,当 a=27 时,能获得最大利润此时 w=10027+24000=21700(元) 因此,购进
24、 A 种型号的手机 27 部,购进 B 种型号的手机 13 部时,获利最大答:购进 A 种型号的手机 27 部,购进 B 种型号的手机 13 部时获利最大点睛:此题考查了一次函数的应用,一元一次不等式的应用, 二元一次方程组的应用,找出满足题意的等量关系与不等关系是解本题的关键.四、填空题(本大题共 4 小题,每小题 6 分,共 24 分.) 22. 已知关于 的方程的两根为,则方程的两根之和为_.【答案】1【解析】分析:设 t=x+1,则方程 a(x+1)2+b(x+1)+1=0 化为 at2+at+1=0,利用方程的解是 x1=1,x2=2 得到 t1=1,t2=2,然后分别计算对应的 x
25、 的值可确定方程 a(x+1)2+b(x+1)+1=0 的解详解:设 x+1=t,方程 a(x+1)2+b(x+1)+1=0 的两根分别是 x3,x4,at2+bt+1=0,由题意可知:t1=1,t2=2,t1+t2=3,x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.23. 如图,以为直径的的圆心 到直线 的距离,的半径,,直线不垂直于直线 ,过点 、 分别作直线 的垂线,垂足分别为点 、 ,则四边形的面积的最大值为_.【答案】12【解析】分析:先判断 OE 为直角梯形 ADCB 的中位线,则 OE (ADBC) ,所以 S
26、四边形15ABCDOECD3CD,只有当 CDAB4 时,CD 最大,从而得到 S 四边形 ABCD 最大值详解:OEl,ADl,BCl,而 OAOB,OE 为直角梯形 ADCB 的中位线,OE (ADBC) ,S 四边形 ABCD (ADBC)CDOECD3CD,当 CDAB4 时,CD 最大,S 四边形 ABCD 最大,最大值为 12点睛:本题考查了梯形的中位线:梯形的中位线平行于两底,并且等于两底和的一半.24. 已知的三边 、 、 满足,则的外接圆半径_.【答案】 【解析】分析:根据题目中的式子可以求得 a、b、c 的值,从而可以求得ABC 的外接圆半径的长详解:ab2|c6|2841
27、0b,(a144)(b210b25)|c6|0,(2)2(b5)2|c6|0,20,b50,c60,解得,a5,b5,c6,ACBC5,AB6,作 CDAB 于点 D,则 AD3,CD4,设ABC 的外接圆的半径为 r,则 OCr,OD4r,OAr,32(4r)2r2,解得,r,故答案为:点睛:本题考查三角形的外接圆与外心、非负数的性质、勾股定理,解答本题的关键是明确题意,找出所求需要的条件,利用数形结合的思想解答25. 如图,直线与两坐标轴分别交于 、 两点,将线段分成 等份,分点分别为,P3,16, ,过每个分点作 轴的垂线分别交直线于点, ,用,分别表示,的面积,则_.【答案】 【解析】
28、分析:如图,作 T1MOB 于 M,T2NP1T1由题意可知:BT1MT1T2NTn1A,四边形OMT1P1是矩形,四边形 P1NT2P2是矩形,推出 SBT1M ,S112S 矩形 OMT1P1,S2 S 矩形P1NT2P2,可得 S1S2S3Sn1 (SAOBnSNBT1) 详解:如图,作 T1MOB 于 M,T2NP1T1由题意可知:BT1MT1T2NTn1A,四边形 OMT1P1是矩形,四边形 P1NT2P2是矩形,SBT1M 1n1n n2,S1 S 矩形 OMT1P1,S2 S 矩形 P1NT2P2,S1S2S3Sn1 (SAOBnSNBT1) ( n)故答案为:点睛:本题考查一次
29、函数的应用,规律型点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积五、解答题(本大题共 3 小题,每小题 12 分,共 36 分.)26. 如图,以的直角边为直径作交斜边于点 ,过圆心 作,交于点 ,连接.(1)判断与的位置关系并说明理由;(2)求证:;17(3)若,求的长.【答案】 (1)证明见解析;(2)证明见解析;(3) 【解析】分析:(1)先判断出 DEBECE,得出DBEBDE,进而判断出ODE90,即可得出结论;(2)先判断出BCDACB,得出 BC2CDAC,再判断出 DE12BC,AC2OE,即可得出结论;(3)先
30、求出 BC,进而求出 BD,CD,再借助(2)的结论求出 AC,即可得出结论详解:(1)DE 是O 的切线,理由:如图,连接 OD,BD,AB 是O 的直径,ADB=BDC=90,OEAC,OA=OB,BE=CE,DE=BE=CE,DBE=BDE,OB=OD,OBD=ODB,ODE=OBE=90,点 D 在O 上,DE 是O 的切线;18(2)BCD=ABC=90,C=C,BCDACB,BC2=CDAC,由(1)知 DE=BE=CE= BC,4DE2=CDAC,由(1)知,OE 是ABC 是中位线,AC=2OE,4DE2=CD2OE,2DE2=CDOE;(3)DE=,BC=5,在 RtBCD
31、中,tanC=,设 CD=3x,BD=4x,根据勾股定理得, (3x)2+(4x)2=25,x=1(舍)或 x=1,BD=4,CD=3,由(2)知,BC2=CDAC,AC=,AD=ACCD=3=点睛:此题是圆的综合题,主要考查了切线的性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,锐角三角函数,判断出BCDACB 是解本题的关键27. 对于三个数 、 、 ,用表示这三个数的中位数,用表示这三个数中最大数,例如:,.解决问题:(1)填空: ,如果,则 的取值范围为 ;19(2)如果,求 的值;(3)如果,求 的值.【答案】 (1),;(2)3 或 0;(3) x=3 或3 【
32、解析】分析:析:(1)根据定义写出 sin45,cos60,tan60的值,确定其中位数;根据maxa,b,c表示这三个数中最大数,对于 max3,53x,2x63,可得不等式组:则,可得结论;(2)根据新定义和已知分情况讨论:2 最大时,x42 时,2 是中间的数时,x22x4,2最小时,x22,分别解出即可;(3)不妨设 y19,y2x2,y33x2,画出图象,根据 M9,x2,3x2max9,x2,3x2,可知:三个函数的中间的值与最大值相等,即有两个函数相交时对应的 x 的值符合条件,结合图象可得结论详解:(1)sin45=,cos60= ,tan60=,Msin45,cos60,ta
33、n60=,max3,53x,2x6=3,则,x 的取值范围为:,故答案为:,;(2)2M2,x+2,x+4=max2,x+2,x+4,分三种情况:当 x+42 时,即 x2,原等式变为:2(x+4)=2,x=3,x+22x+4 时,即2x0,原等式变为:22=x+4,x=0,当 x+22 时,即 x0,原等式变为:2(x+2)=x+4,x=0,综上所述,x 的值为3 或 0;(3)不妨设 y1=9,y2=x2,y3=3x2,画出图象,如图所示:结合图象,不难得出,在图象中的交点 A、B 点时,满足条件且 M9,x2,3x2=max9,x2,3x220=yA=yB,此时 x2=9,解得 x=3
34、或3点睛:本题考查了方程和不等式的应用及新定义问题,理解新定义,并能结合图象,可以很轻松将抽象题或难题破解,由此看出,图象在函数相关问题的作用是何等重要28. 如图,已知抛物线与 轴交于点和点,交 轴于点 .过点 作轴,交抛物线于点 .(1)求抛物线的解析式;(2)若直线与线段、分别交于 、 两点,过 点作轴于点 ,过点 作轴于点 ,求矩形的最大面积;(3)若直线将四边形分成左、右两个部分,面积分别为、,且,求 的值.【答案】 (1)y=x2+2x3;(2)3;(3). 【解析】分析:(1)利用待定系数法即可得出结论;(2)先利用待定系数法求出直线 AD,BD 的解析式,进而求出 G,H 的坐
35、标,进而求出 GH,即可得出结论;21(3)先求出四边形 ADNM 的面积,再求出直线 ykx1 与线段 CD,AB 的交点坐标,即可得出结论详解:(1)抛物线 y=ax2+bx3 与 x 轴交于点 A(3,0)和点 B(1,0) ,抛物线的解析式为 y=x2+2x3;(2)由(1)知,抛物线的解析式为 y=x2+2x3,C(0,3) ,x2+2x3=3,x=0 或 x=2,D(2,3) ,A(3,0)和点 B(1,0) ,直线 AD 的解析式为 y=3x9,直线 BD 的解析式为 y=x1,直线 y=m(3m0)与线段 AD、BD 分别交于 G、H 两点,G( m3,m) ,H(m+1,m)
36、 ,GH=m+1( m3)= m+4,S矩形 GEFH=m( m+4)= (m2+3m)= (m+ )2+3,m= ,矩形 GEFH 的最大面积为 3(3)A(3,0) ,B(1,0) ,AB=4,C(0,3) ,D(2,3) ,CD=2,S四边形 ABCD= 3(4+2)=9,S1:S2=4:5,S1=4,如图,设直线 y=kx+1 与线段 AB 相交于 M,与线段 CD 相交于 N,22M( ,0) ,N( ,3) ,AM= +3,DN= +2,S1= (+3 +2)3=4,k= 点睛:此题是二次函数综合题,主要考查了待定系数法,矩形的面积公式,梯形的面积公式,求出相关线段的长是解本题的关键