控制系统的时域分析精.ppt

上传人:石*** 文档编号:72971118 上传时间:2023-02-14 格式:PPT 页数:41 大小:3.54MB
返回 下载 相关 举报
控制系统的时域分析精.ppt_第1页
第1页 / 共41页
控制系统的时域分析精.ppt_第2页
第2页 / 共41页
点击查看更多>>
资源描述

《控制系统的时域分析精.ppt》由会员分享,可在线阅读,更多相关《控制系统的时域分析精.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、控制系统的时域分析第1页,本讲稿共41页主要内容12.1 控制系统的动态性能指标分析n12.1.1 控制系统的动态性能指标n12.1.2 控制系统动态性能指标的MATLAB求取示例n12.2 控制系统的稳态性能指标分析n12.2.1 系统的稳态性能指标n12.2.2 控制系统稳态性能指标的MATLAB求取示例第2页,本讲稿共41页主要内容(续)n12.3 MATLAB时域响应仿真的典型函数应用n12.3.1 MATLAB时域响应仿真的典型函数n12.3.2 MATLAB时域响应仿真的典型函数应用实例n12.4 MATLAB/Simulink图形化时域分析n12.4.1 MATLAB LTI V

2、iewer应用实例n12.4.2 Simulink应用实例n本章小结第3页,本讲稿共41页系统的性能指标n性能指标,指在分析一个控制系统的时候,评价系统性能好坏的标准。n系统性能的描述,又可以分为动态性能和稳态性能。粗略地说,系统的全部响应过程中,系统的动态性能表现在过渡过程结束之前的响应中,系统的稳态性能表现在过渡过程结束之后的响应中。n系统性能的描述,如以准确的定量方式来描述称为系统的性能指标。第4页,本讲稿共41页系统测试信号n系统测试信号的选取原则 对于一个实际的控制系统,测试信号的形式应接近或反映系统工作时最常见的输入信号形式,同时也应该注意选取对系统工作最不利的信号作为测试信号。n

3、常用测试信号 对各种控制系统的性能进行测试和评价时,人们习惯选择下述5种信号作为系统的输入信号。第5页,本讲稿共41页典型测试信号表名称时域表达式复域表达式单位阶跃函数单位斜坡函数单位加速度函数单位脉冲函数 1正弦函数第6页,本讲稿共41页12.1控制系统的动态性能指标分析第7页,本讲稿共41页12.1控制系统的动态性能指标分析n对于稳定系统,通常在系统阶跃响应曲线上来定义系统动态性能指标。n系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。同时,单位阶跃信号又是一个最简单、最容易实现的信号。第8页,本讲稿共41页n最大超调量(简称超调量)瞬态过程中

4、输出响应的最大值超过稳态值的百分数。n峰值时间 输出响应超过稳态值第一次达到峰值所需要的时间。n上升时间 输出响应第一次达到稳态值的时间。有时也定义为输出从稳态值的10%上升到90%的时间。12.1.1控制系统的动态性能指标第9页,本讲稿共41页n延迟时间 输出响应第一次达到稳态值所需的时间。n调节时间(过渡过程时间)误差达到规定的允许值,且以后不再超出此值所需的时间。n振荡次数 在调节时间内,响应曲线振荡的次数。12.1.1控制系统的动态性能指标第10页,本讲稿共41页n通常在系统阶跃响应曲线上来定义系统动态性能指标。n在用MATLAB求取系统动态性能指标之前,首先给出单位阶跃响应函数ste

5、p的用法。n给定系统,可使用下表所列函数调用方式得到系统阶跃响应。n注:相关函数的帮助文档导读12.1.2控制系统动态性能指标MATLAB求取实例第11页,本讲稿共41页系统阶跃响应函数用法step(num,den)step(G)绘制系统阶跃响应曲线。step(num,den,t)step(G,t)绘制系统阶跃响应曲线。由用户指定时间范围,如t是标量,则指定了终止时间;如t是向量,则指定了步距和起止时间 y=step(num,den,t)y=step(G,t)返回系统阶跃响应曲线y值,不绘制图形。用户可用plot函数绘制 y,t=step(num,den,t)y,t=step(G,t)返回系统

6、阶跃响应曲线y值和t值,不绘制图形。可用plot函数绘制 第12页,本讲稿共41页step(A,B,C,D,iu)step(A,B,C,D,iu)绘制系统阶跃响应曲线。iu指定输入和输出step(A,B,C,D,iu,t)step(A,B,C,D,iu,t)绘制系统的阶跃响应曲线。iu指定输入,t指定时间范围y,x,t=y,x,t=step(A,B,C,D,iu)step(A,B,C,D,iu)返回系统阶跃响应曲线参数,不绘制图形。x为系统状态轨迹,t由系统模型特性决定y,x,t=y,x,t=step(A,B,C,D,iu,t)step(A,B,C,D,iu,t)返回系统阶跃响应曲线参数,不绘

7、制图形。x为系统状态轨迹,t指定时间范围状态空间方程表示的系统阶跃响应函数用法第13页,本讲稿共41页12.1.2控制系统动态性能指标MATLAB求取实例n注:演示例1设单位负反馈系统的开环传递函数为:试求系统单位阶跃响应。第14页,本讲稿共41页n注:演示例3 单位负反馈系统的开环传递函数,试求系统动态性能指标。12.1.2控制系统动态性能指标MATLAB求取实例第16页,本讲稿共41页12.2控制系统的稳态性能指标分析第18页,本讲稿共41页系统的稳态性能指标n稳态误差:系统误差为 ,而稳态误差即当时间t趋于无穷时,系统输出响应的期望值与实际值之差 。n这种定义被称为是在输出端定义的稳态误

8、差。n下表给出不同输入信号下系统的稳态误差计算方式。第19页,本讲稿共41页不同输入信号下系统的稳态误差计算第20页,本讲稿共41页nKp=dcgain(numk,denk)nKv=dcgain(numk 0,denk)nKa=dcgain(numk 0 0,denk)nnumk,denk为 稳态误差公式计算的开环传递函数分母系数和分子系数G(s)*H(s).阶跃为limG(s)*H(s),斜坡为乘S,抛物线为乘s2n 稳态误差公式计算后的传递函数分母系数和分子系数参见课本233稳态误差系数MATLAB求解第21页,本讲稿共41页12.2.2 控制系统稳态性能指标MATLAB求取示例n注:演示

9、例6单位负反馈系统的开环传递函数为:试求单位阶跃输入下的稳态误差。第22页,本讲稿共41页n分析:手工计算和MATLAB程序得出的结果比较是一致的。可见由MATLAB程序很容易得到稳态误差。n使用Simulink求取稳态误差更方便,因为在 Simulink下可以直接将误差信号引出到示波器观察。12.2.2 控制系统稳态性能指标MATLAB求取示例第23页,本讲稿共41页12.3MATLAB时域响应仿真的典型函数应用第24页,本讲稿共41页12.3.1MATLAB时域响应仿真的典型函数nMATLAB时域响应仿真的典型输入函数除step(单位阶跃函数)外,还有impulse(单位脉冲函数),lsi

10、m(求任意函数作用下系统响应的函数)等。n各函数的用法如下表。n注:下述函数的帮助文档导读第25页,本讲稿共41页impulse(G)impulse(G,t)impulse(G1,G2,.,Gn)y,t=impulse(G),y=impulse(G,t)求取系统单位脉冲响应,其用法基本同step函数。如带返回参数列表使用则不输出响应曲线,不带返回参数列表则直接打印响应曲线lsim(G,u,t)y,t=lsim(G,u,t)求取系统对任意输入u的响应。如带返回参数列表使用则不输出响应曲线,不带返回参数列表则直接打印响应曲线求取时域响应函数及用法第26页,本讲稿共41页第29页,本讲稿共41页第3

11、0页,本讲稿共41页第31页,本讲稿共41页第32页,本讲稿共41页第33页,本讲稿共41页第34页,本讲稿共41页12.4MATLAB/Simulink图形化时域分析n除应用函数直接进行时域分析之外,也可以利用MATLAB的图形工具,得到系统的响应曲线及性能指标,供进一步分析。n有关MATLAB LTI Viewer的用法,在系统稳定性分析一章中已有初步介绍。第35页,本讲稿共41页12.4.2 Simulink应用实例n注:演示例10 系统的开环传递函数为 在Simulink下观察系统在不同输入下的响应曲线。第37页,本讲稿共41页例10系统的Simulink模型图第38页,本讲稿共41页

12、本章小结n系统性能指标包括动态性能指标和稳态性能指标。系统的全部响应过程中,系统的动态性能表现在过渡过程结束之前的响应中,系统的稳态性能表现在过渡过程结束之后的响应中。n对于稳定系统,系统动态性能指标通常在系统阶跃响应曲线上来定义。MATLAB给出了step输入函数,用以求取系统阶跃响应。第39页,本讲稿共41页本章小结(续)n稳态误差是当时间t趋于无穷时,系统输出响应的期望值与实际值之差。不同类型的系统稳态误差可以通过查表进行手工计算求取,也可使用MATLAB求取。nMATLAB提供了求取时域响应仿真其它函数如单位脉冲函数impulse,求任意函数作用下系统响应的函数lsim等。可以间接使用已有的函数进行斜坡输入函数和加速度输入函数等函数的响应求取。第40页,本讲稿共41页本章小结(续)n可以利用MATLAB的图形工具,以图形化的方式得到系统的响应曲线及性能指标,以供进一步分析。第41页,本讲稿共41页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁