《二次函数重点难点总结.pdf》由会员分享,可在线阅读,更多相关《二次函数重点难点总结.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中二次函数知识点总结 一、二次函数概念:1二次函数的概念:一般地,形如2yaxbxc(abc,是常数,0a)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而bc,可以为零二次函数的定义域是全体实数 2.二次函数2yaxbxc的结构特征:等号左边是函数,右边是关于自变量x的二次式,x的最高次数是 2 abc,是常数,a是二次项系数,b是一次项系数,c是常数项 二、二次函数的基本形式 1.二次函数基本形式:2yax的性质:a 的绝对值越大,抛物线的开口越小。2.2yaxc的性质:上加下减。3.2ya xh的性质:左加右减。a的符号 开口方向 顶点坐标 对称轴 性质 向上
2、 y轴 0 x 时,y随x的增大而增大;0 x 时,y随x的增大而减小;0 x 时,y有最小值0 向下 y轴 0 x 时,y随x的增大而减小;0 x 时,y随x的增大而增大;0 x 时,y有最大值0 a的符号 开口方向 顶点坐标 对称轴 性质 向上 y轴 0 x 时,y随x的增大而增大;0 x 时,y随x的增大而减小;0 x 时,y有最小值c 向下 y轴 0 x 时,y随x的增大而减小;0 x 时,y随x的增大而增大;0 x 时,y有最大值c a的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h xh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0 向下 X=h x
3、h时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0 4.2ya xhk的性质:三、二次函数图象的平移 1.平移步骤:方法一:将抛物线解析式转化成顶点式2ya xhk,确定其顶点坐标hk,;保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下:2.平移规律 在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”概括成八个字“左加右减,上加下减”方法二:cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成 mcbxaxy2(或mcbxaxy2)cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2
4、(或cmxbmxay)()(2)四、二次函数2ya xhk与2yaxbxc的比较 从解析式上看,2ya xhk与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbya xaa,其中2424bacbhkaa,五、二次函数2yaxbxc图象的画法 五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10 x,20 x,(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时
5、应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数2yaxbxc的性质 a的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h xh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k 向下 X=h xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k 1.当0a 时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa 时,y随x的增大而减小;当2bxa 时,y随x的增大而增大;当2bxa 时,y有最小值244acba 2.当0a 时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bac
6、baa,当2bxa 时,y随x的增大而增大;当2bxa 时,y随x的增大而减小;当2bxa 时,y有最大值244acba 七、二次函数解析式的表示方法 1.一般式:2yaxbxc(a,b,c为常数,0a);2.顶点式:2()ya xhk(a,h,k为常数,0a);3.两根式:12()()ya xxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1.二次
7、项系数a 二次函数2yaxbxc中,a作为二次项系数,显然0a 当0a 时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当0a 时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大 总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小 2.一次项系数b 在二次项系数a确定的前提下,b决定了抛物线的对称轴 在0a 的前提下,当0b 时,02ba,即抛物线的对称轴在y轴左侧;当0b 时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧 在0a 的前提下,结论刚好与上述相反,即 当0b 时,02ba
8、,即抛物线的对称轴在y轴右侧;当0b 时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧 总结起来,在a确定的前提下,b决定了抛物线对称轴的位置 ab的符号的判定:对称轴abx2在y轴左边则0ab,在y轴的右侧则0ab,概括的说就是“左同右异”总结:3.常数项c 当0c 时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;当0c 时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;当0c 时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负 总结起来,c决定了抛物线与y轴交点的位置 总之,只要abc,都确定,那么这条抛
9、物线就是唯一确定的 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式 九、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1.关于x轴对称 2yaxbxc关于x轴对称后,得到的解析式是2yaxbxc;2ya xhk关于x轴对称后,得到
10、的解析式是2ya xhk;2.关于y轴对称 2yaxbxc关于y轴对称后,得到的解析式是2yaxbxc;2ya xhk关于y轴对称后,得到的解析式是2ya xhk;3.关于原点对称 2yaxbxc关于原点对称后,得到的解析式是2yaxbxc;2ya xhk关于原点对称后,得到的解析式是2ya xhk;4.关于顶点对称(即:抛物线绕顶点旋转 180)2yaxbxc关于顶点对称后,得到的解析式是222byaxbxca ;2ya xhk关于顶点对称后,得到的解析式是2ya xhk 5.关于点mn,对称 2ya xhk关于点mn,对称后,得到的解析式是222ya xhmnk 根据对称的性质,显然无论作
11、何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式 十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc当函数值0y 时的特殊情况.图象与x轴的交点个数:当240bac 时,图象与x轴交于两点1200A xB x,12()xx,其中的12xx,是一元二次方程200axbxca的两根这两点间
12、的距离2214bacABxxa.当0 时,图象与x轴只有一个交点;当0 时,图象与x轴没有交点.1 当0a 时,图象落在x轴的上方,无论x为任何实数,都有0y;2 当0a 时,图象落在x轴的下方,无论x为任何实数,都有0y 2.抛物线2yaxbxc的图象与y轴一定相交,交点坐标为(0,)c;3.二次函数常用解题方法总结:求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;根据图象的位置判断二次函数2yaxbxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.与二次函数有关的还有二次三项式,二次三项式2(0)axbxc a本身就是所含字母x的二次函数;下面以0a 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:抛物线与x轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 抛物线与x轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 抛物线与x轴无交点 二次三项式的值恒为正 一元二次方程无实数根.二次函数图像参考: