(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题6 立体几何与空间向量学案 理.doc

上传人:随风 文档编号:724279 上传时间:2019-06-07 格式:DOC 页数:13 大小:710.81KB
返回 下载 相关 举报
(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题6 立体几何与空间向量学案 理.doc_第1页
第1页 / 共13页
(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题6 立体几何与空间向量学案 理.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题6 立体几何与空间向量学案 理.doc》由会员分享,可在线阅读,更多相关《(全国通用版)2019高考数学二轮复习 板块四 考前回扣 专题6 立体几何与空间向量学案 理.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1回扣回扣 6 6 立体几何与空间向量立体几何与空间向量1四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系2三视图(1)三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高(2)三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样3柱、锥、台、球体的表面积和体积侧面展开图表面积体积直棱柱长方形S2S底S侧VS底h圆柱长方形S2r22rlVr2l棱锥由若干三角形构成SS底

2、S侧VS底h1 3圆锥扇形Sr2rlV r2h1 3棱台由若干个梯形构成SS上底S下底S侧V (SS1 3SS)h圆台扇环Sr2(rr)lr2V (r2rr1 3r2)h球S4r2V r34 3234.平行、垂直关系的转化示意图(1)(2)两个结论Error!ab,Error!b.5用空间向量证明平行、垂直设直线l的方向向量为a a(a1,b1,c1),平面,的法向量分别为(a2,b2,c2),v v(a3,b3,c3)则有:(1)线面平行la aa a0a1a2b1b2c1c20.(2)线面垂直la aa aka1ka2,b1kb2,c1kc2.(3)面面平行v vv va2a3,b2b3,

3、c2c3.(4)面面垂直v vv v0a2a3b2b3c2c30.6用向量求空间角(1)直线l1,l2的夹角满足 cos |cosl l1,l l2|(其中l l1,l l2分别是直线l1,l2的方向向量)(2)直线l与平面的夹角满足 sin |cosl l,n n|(其中l l是直线l的方向向量,n n是平面的法向量)(3)平面,的夹角满足 cos |cosn n1,n n2|,则二面角l的平面角为或 (其中n n1,n n2分别是平面,的法向量)1混淆“点A在直线a上”与“直线a在平面内”的数学符号关系,应表示为Aa,a.2在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何

4、体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主43易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数 .1 34不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错如由,l,ml,易误得出m的结论,就是因为忽视面面垂直的性质定理中m的限制条件5注意图形的翻折与展开前后变与不变的量以及位置关系对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位

5、置与数量关系6几种角的范围两条异面直线所成的角:090;直线与平面所成的角:090;二面角:0180.7空间向量求角时易忽视向量的夹角与所求角之间的关系,如求解二面角时,不能根据几何体判断二面角的范围,忽视向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错1一个几何体的三视图如图所示,则这个几何体的体积是( )A. B. C. D 3 4 2答案 D解析 由三视图可知,该几何体为球的 ,其半径为 1,则体积V 13.3 43 44 32直三棱柱ABCA1B1C1的直观图及三视图如图所示,D为AC的中点,则下列命题中是假命题的是( )5AAB1平面BDC1BA1C平面BDC1C直三棱柱

6、的体积V4D直三棱柱的外接球的表面积为 43答案 D解析 由三视图可知,直三棱柱ABCA1B1C1的侧面B1C1CB是边长为 2 的正方形,底面ABC是等腰直角三角形,ABBC,ABBC2.连接B1C交BC1于点O,连接OD.在CAB1中,O,D分别是B1C,AC的中点,ODAB1,又OD平面BDC1,AB1平面BDC1,AB1平面BDC1.故 A 正确;在直三棱柱ABCA1B1C1中,AA1平面ABC,AA1BD.又ABBC2,D为AC的中点,BDAC,又AA1ACA,AA1,AC平面AA1C1C,BD平面AA1C1C,又A1C平面AA1C1C,BDA1C.又A1B1B1C1,A1B1B1B

7、,B1C1B1BB1,B1C1,B1B平面B1C1CB,A1B1平面B1C1CB,又BC1平面B1C1CB,6A1B1BC1.BC1B1C,且A1B1B1CB1,A1B1,B1C平面A1B1C,BC1平面A1B1C,又A1C平面A1B1C,BC1A1C,又BDBC1B,BD,BC1平面BDC1,A1C平面BDC1.故 B 正确;VSABCC1C 2224,故 C 正确;1 2此直三棱柱的外接球的半径为,其表面积为 12,D 错故选 D.33已知直线l,m和平面,则下列结论正确的是( )A若lm,m,则lB若l,m,则lmC若lm,l,则mD若l,m,则lm答案 B解析 若lm,m,则l或l,故

8、 A 错误;若l,m,则lm,B 正确;若lm,l,则m或m,故 C 错误;若l,m,则lm或l,m异面,故选 B.4已知互相垂直的平面,交于直线l.若直线m,n满足m,n,则( )Aml BmnCnl Dmn答案 C解析 由题意知,l,l,n,nl.故选 C.5已知m,n为异面直线,m平面,n平面,直线l满足lm,ln,l,l,则( )A且lB且lC与相交,且交线垂直于lD与相交,且交线平行于l答案 D7解析 假设,由m平面,n平面,得mn,这与已知m,n为异面直线矛盾,那么与相交,设交线为l1,则l1m,l1n,在直线m上任取一点作n1平行于n,那么l1和l都垂直于直线m与n1所确定的平面

9、,所以l1l.6.如图,正方体AC1的棱长为 1,过点A作平面A1BD的垂线,垂足为点H,以下四个命题:点H是A1BD的垂心;AH垂直于平面CB1D1;直线AH和BB1所成的角为 45;AH的延长线经过点C1,其中假命题的个数为( )A0 B1C2 D3答案 B解析 ABAA1AD,BA1BDA1D,三棱锥 ABA1D为正三棱锥,点H是A1BD的垂心,故正确;平面A1BD与平面B1CD1平行,AH平面A1BD,AH平面CB1D1,故正确;AA1BB1,A1AH就是直线AH和BB1所成的角,在直角三角形AHA1中,AA11,A1H ,2 332263sinA1AH,故错误;6322根据正方体的对

10、称性得到AH的延长线经过点C1,故正确,故选 B.7将正方体纸盒展开如图,则直线AB,CD在原正方体中的位置关系是( )8A平行 B垂直C相交成 60角 D异面且成 60角答案 D解析 如图,直线AB,CD异面因为CEAB,所以ECD即为直线AB,CD所成的角,因为CDE为等边三角形,故ECD60.8长方体的顶点都在同一球面上,其同一顶点处的三条棱长分别为 3,4,5,则该球面的表面积为( )A25 B50 C75 D.125 23答案 B解析 设球的半径为R,由题意可得(2R)232425250,4R250,球的表面积为S4R250.9.如图,三棱锥ABCD的棱长全相等,点E为棱AD的中点,

11、则直线CE与BD所成角的余弦值为( )A. B.3632C. D.3361 2答案 A解析 方法一 取AB中点G,连接EG,CG.E为AD的中点,EGBD.9GEC为CE与BD所成的角设AB1,则EGBD ,1 21 2CECG,32cosGECEG2EC2GC2 2 EGEC(1 2)2(32)2(32)22 1 232.36方法二 设AB1,则()()()CEBDAEACADAB(1 2ADAC)ADAB21 2AD1 2ADABACADACAB cos 60cos 60cos 60 .1 21 21 4cos, ,故选 A.CEBDCEBD|CE|BD|1 4323610已知正三棱柱AB

12、CA1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于( )A. B.64104C. D.2232答案 A解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为 2,则O(0,0,0),B(,0,0),A(0,1,0),B1(,0,2),则1(,1,2),33AB310则(,0,0)为侧面ACC1A1的法向量,BO3故 sin .|AB1BO|AB1|BO|6411.如图,在空间四边形ABCD中,点MAB,点NAD,若,则直线MN与平面BDC的AM MBAN ND位置关系是_答案 平行解析 由,得MNBD.AM MBAN ND而BD平面BDC,MN平面BDC,所以MN

13、平面BDC.12如图,在长方体ABCDABCD中,E,F,G,H分别是棱AD,BB,BC,DD的中点,从中任取两点确定的直线中,与平面ABD平行的有_条答案 6解析 如图,连接EG,EH,FG,EF,HG,EHFG且EHFG,EFGH四点共面,由EGAB,EHAD,EGEHE,ABADA,可得平面EFGH与平面ABD平行,符合条件的共有 6 条1113点P在正方形ABCD所在平面外,PA平面ABCD,PAAB,则PB与AC所成角的大小是_答案 3解析 以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间直角坐标系(图略),设正方形ABCD的边长为 1,则A(0,0,0

14、),P(0,0,1),B(1,0,0),C(1,1,0),(1,0,1),(1,1,0),因此PBACcos, ,PBAC10 10 1120212 1212021 2因此PB和AC所成角的大小为. 314设m,n是不同的直线,是不同的平面,有以下四个命题:Error!;Error!m;Error!;Error!m.其中,正确的命题是_(填序号)答案 解析 中平行于同一平面的两平面平行是正确的;中m,可能平行,相交或直线在平面内;中由面面垂直的判定定理可知结论正确;中m,可能平行或线在面内15如图(1),在边长为 4 的菱形ABCD中,DAB60,点E,F分别是边CD,CB的中点,ACEFO,

15、沿EF将CEF翻折到PEF,连接PA,PB,PD,得到如图(2)所示的五棱锥PABFED,且PB.10(1)求证:BDPA;(2)求四棱锥PBFED的体积(1)证明 点E,F分别是边CD,CB的中点,BDEF.12菱形ABCD的对角线互相垂直,BDAC,EFAC,EFAO,EFPO.AO平面POA,PO平面POA,AOPOO,EF平面POA,BD平面POA,又PA平面POA,BDPA.(2)解 设AOBDH.连接BO,DAB60,ABD为等边三角形,BD4,BH2,HA2,HOPO,33在 RtBHO中,BO,BH2HO27在PBO中,BO2PO210PB2,POBO.POEF,EFBOO,E

16、F平面BFED,BO平面BFED,OP平面BFED,梯形BFED的面积S (EFBD)HO3,1 23四棱锥PBFED的体积VSPO 33.1 31 33316.如图,四棱锥SABCD的底面是正方形,SD平面ABCD,SDADa,点E是SD上的点,且DEa(01)13(1)求证:对任意的(0,1,都有ACBE;(2)若二面角CAED的大小为 60,求的值(1)证明 如图,以D为原点,DA所在直线为x轴,DC所在直线为y轴,DS所在直线为z轴,建立空间直角坐标系Dxyz,则A(a,0,0),B(a,a,0),C(0,a,0),D(0,0,0),E(0,0,a)(a,a,0),(a,a,a),ACBEa2a20a0,ACBE0 对任意(0,1都成立,即对任意的(0,1,都有ACBE.ACBE(2)解 显然n n(0,1,0)是平面ADE的一个法向量,设平面ACE的法向量为m m(x,y,z),(a,a,0),(a,0,a),Error!ACAE即Error!Error!取z1,则xy,m m(,1),二面角CAED的大小为 60,|cosn n,m m| ,|n nm m|n n|m m|1221 2(0,1,.22

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁