二次函数-平行四边形存在性问题.ppt

上传人:知****量 文档编号:71798799 上传时间:2023-02-06 格式:PPT 页数:22 大小:320.54KB
返回 下载 相关 举报
二次函数-平行四边形存在性问题.ppt_第1页
第1页 / 共22页
二次函数-平行四边形存在性问题.ppt_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《二次函数-平行四边形存在性问题.ppt》由会员分享,可在线阅读,更多相关《二次函数-平行四边形存在性问题.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、二次函数-平行四边形存在性问题二次函数专题复习二次函数专题复习平行四边形存在性问题平行四边形存在性问题中考专题复习1 1.复习平行四边形在坐标系的有关性质;复习平行四边形在坐标系的有关性质;2 2.会解决二次函数中平行四边形的存在性问题;会解决二次函数中平行四边形的存在性问题;3 3.体会分类思想在数学中的应用体会分类思想在数学中的应用.学习目标学习目标思考:点思考:点A、B、C是平面内不在同一条直线上的三点是平面内不在同一条直线上的三点,点点D是平面内任意一点是平面内任意一点,若若A、B、C、D四点恰好构成一个平四点恰好构成一个平行四边形行四边形,则在平面内符合这样条件的点则在平面内符合这样

2、条件的点D有有()A 1个个 B 2个个 C 3个个 D 4个个 ACBD3D2D1C 平面内,线段平面内,线段AB平移得到线段平移得到线段AB,则,则ABAB,AB=AB;AABB,AA=BB.练习练习1:如图,线段:如图,线段AB平移得到线段平移得到线段A B,已知点已知点A(-2,2),B(-3,-1),B (3,1),则点则点A的坐标是的坐标是_.(4,4)(-2,2)(-3,-1)(3,1)复习回顾 如图,在平面直角坐标系中,如图,在平面直角坐标系中,ABCD的顶点坐标分别为的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),已知其中任意已知其中任

3、意3个顶点的个顶点的坐标,如何确定第坐标,如何确定第4个顶点的坐标?个顶点的坐标?(x1,y1)(x2,y2)(x4,y4)(x3,y3)一、坐标系中的平移一、坐标系中的平移(x1,y1)(x2,y2)(x4,y4)(x3,y3)x1-x2=x4-x3 y1-y2=y4-y3 x2-x1=x3-x4 y2-y1=y3-y4 x4-x1=x3-x2 y4-y1=y3-y2 x1-x4=x2-x3 y1-y4=y2-y3 x1+x3=x2+x4y1+y3=y2+y4一、坐标系中的平移一、坐标系中的平移结果的表述可以化为同一种形式结果的表述可以化为同一种形式殊途同归殊途同归 如图,在平面直角坐标系中

4、,如图,在平面直角坐标系中,ABCD的顶点坐标分别为的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),则这,则这4个顶点坐标之间个顶点坐标之间的关系是什么?的关系是什么?x1+x3=x2+x4y1+y3=y2+y4平面直角坐标系中,平行四边形两组相对顶点平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐标之和也相等的横坐标之和相等,纵坐标之和也相等对点法(x1,y1)(x2,y2)(x4,y4)(x3,y3)一招制胜一招制胜二、对点法二、对点法三、典型例题学习三、典型例题学习三定一动三定一动例例1 如图,平面直角坐标中,已知中如图,平面直角坐标

5、中,已知中A(-1,0),B(1,-2),C(3,1),点点D是平面内一动点,若以点是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边为顶点的四边形是平行四边形,则点形,则点D的坐标是的坐标是_.(-3,-3),(1,3),(5,-1)点点A与点与点B相对相对点点A与点与点C相对相对点点A与点与点D相对相对设点设点D(x,y)-1+1=3+x0-2=1+y-1+3=1+x0+1=-2+y-1+x=1+30+y=-2+1 x=-3y=-3x=1y=3x=5y=-1三、典型例题学习三、典型例题学习例例1 如图,平面直角坐标中,已知中如图,平面直角坐标中,已知中A(-1,0),B(1,-2

6、),C(3,1),点点D是平面内一动点,若以点是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边为顶点的四边形是平行四边形,则点形,则点D的坐标是的坐标是_.(-3,-3),(1,3),(5,-1)说明:若题中四边形说明:若题中四边形ABCD是平行四边形,是平行四边形,则点则点D的坐标只有一个结果的坐标只有一个结果_.三定一动三定一动(1,3)四、解决问题四、解决问题1.已知,抛物线已知,抛物线y=-x2+x+2 与与x轴的交点为轴的交点为A、B,与,与y轴的交点为轴的交点为C,点点M是是平面内一点,判断有几个位置能使以点平面内一点,判断有几个位置能使以点M、A、B、C为顶点的四边形

7、为顶点的四边形是平行四边形,请写出相应的坐标是平行四边形,请写出相应的坐标 先求出先求出A(-1,0),B(2,0),C(0,2)所以,所以,M1(3,2),M2(-3,2),M3(1,-2)三定一动三定一动,设点设点M(x,y)点点A与点与点B相对相对点点A与点与点C相对相对点点A与点与点M相对相对-1+2=0+x0+0=2+y-1+0=2+x0+2=0+y-1+x=2+00+y=0+2 x=1y=-2x=-3y=2x=3y=22.如图,平面直角坐标中,如图,平面直角坐标中,y=-0.25x2+x 与与x轴相交于点轴相交于点B(4,0),点,点Q在在抛物线的对称轴上,点抛物线的对称轴上,点P

8、在抛物线上,且以点在抛物线上,且以点O、B、Q、P为顶点的四边形为顶点的四边形是平行四边形,写出相应的点是平行四边形,写出相应的点P的坐标的坐标.,设,设Q(2,a),P(m,-0.25m2+m).四、解决问题四、解决问题两定两动两定两动已知已知B(4,0),O(0,0)点点B与点与点O相对相对点点B与点与点Q相对相对点点B与点与点P相对相对4+0=2+m0+0=a-0.25m2+m 4+2=0+m0+a=0-0.25m2+m4+m=0+20-0.25m2+m=0+a m=2a=-1m=6a=-3m=-2a=-32.如图,平面直角坐标中,如图,平面直角坐标中,y=-0.25x2+x与与x轴相交

9、于点轴相交于点B(4,0),点,点Q在在抛物线的对称轴上,点抛物线的对称轴上,点P在抛物线上,且以点在抛物线上,且以点O、B、Q、D为顶点的四边形为顶点的四边形是平行四边形,写出相应的点是平行四边形,写出相应的点P的坐标的坐标.,设,设Q(2,a),P(m,-0.25m2+m).四、解决问题四、解决问题两定两动两定两动已知已知B(4,0),O(0,0)点点B与点与点O相对相对点点B与点与点Q相对相对点点B与点与点P相对相对4+0=2+m4+2=0+m4+m=0+2m=2m=6m=-2几何画板演示几何画板演示四、解决问题四、解决问题3.如图,平面直角坐标中,如图,平面直角坐标中,y=0.5x2+

10、x-4与与y轴相交于点轴相交于点B(0,-4),点,点P是抛物线上的动点,点是抛物线上的动点,点Q是直线是直线y=-x上的动点,判断有几个位置能使以点上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,写出相应的点为顶点的四边形为平行四边形,写出相应的点Q的坐标的坐标.,设,设P(m,0.5m2+m-4),Q(a,-a).两定两动两定两动已知已知B(0,-4),O(0,0)点点B与点与点O相对相对点点B与点与点P相对相对点点B与点与点Q相对相对0+0=m+a-4+0=0.5m2+m-4-a 0+m=0+a-4+0.5m2+m-4=0-a0+a=0+m-4-a=0+0.5m

11、2+m-4 a1=4 a2=0(舍)(舍)a1=-4 a2=0(舍)(舍)几何画板演示几何画板演示4.如图,平面直角坐标中,如图,平面直角坐标中,y=x2-2x-3与与x轴相交于点轴相交于点A(-1,0),点,点C的坐标的坐标是(是(2,-3),点),点P抛物线上的动点,点抛物线上的动点,点Q是是x轴轴上的动点,判断有几个位置能使上的动点,判断有几个位置能使以点以点A、C、P、Q为顶点的四边形为平行四边形,写出相应的点为顶点的四边形为平行四边形,写出相应的点Q的坐标的坐标.,设,设P(m,m2-2m-3),Q(a,0).四、解决问题四、解决问题两定两动两定两动已知已知A(-1,0),C(2,-

12、3)点点A与点与点C相对相对点点A与点与点P相对相对点点A与点与点Q相对相对-1+2=m+a0-3=m2-2m-3+0-1+m=2+a 0+m2-2m-3=-3+0-1+a=2+m0+0=-3+m2-2m-3 a1=1 a2=-1(舍)(舍)a1=-3 a2=-1(舍)(舍)几何画板演示几何画板演示请你写出相应的点请你写出相应的点Q的坐标的坐标四、解决问题四、解决问题5.已知抛物线已知抛物线y=x2-2x+a(a0)与与y轴相交于点轴相交于点A,顶点为,顶点为M.直线直线y=0.5x-a与与y轴相交于点轴相交于点C,并且与直线,并且与直线AM相交于点相交于点N.若点若点P是抛物线上一动点,求出

13、使得以是抛物线上一动点,求出使得以P、A、C、N为顶点的四边形是平行为顶点的四边形是平行四边形的点四边形的点P的坐标的坐标.先求出先求出A(0,a),C(0,-a),设设P(m,m2-2m+a)四动四动四、解决问题四、解决问题先求出先求出A(0,a),C(0,-a),设设P(m,m2-2m+a)四动四动点点A与点与点C相对相对点点A与点与点N相对相对点点A与点与点P相对相对(舍)(舍)几何画板演示几何画板演示此刻,我们一起分享此刻,我们一起分享 二次函数综合问题中,平行四边形的存在性问题,无论是二次函数综合问题中,平行四边形的存在性问题,无论是“三定一动三定一动”,还是还是“两定两动两定两动”

14、,甚至是,甚至是“四动四动”问题,能够一招制胜的方法就是问题,能够一招制胜的方法就是“对点对点法法”,需要分,需要分三种三种情况,得出三个方程组求解。这种从情况,得出三个方程组求解。这种从“代数代数”的角度思考的角度思考解决问题的方法,动点越多,优越性越突出!解决问题的方法,动点越多,优越性越突出!“构造中点三角形构造中点三角形”,“以边、对角线构造平行四边形以边、对角线构造平行四边形”等从等从“几何几何”的的角度解决问题的方法,需要先画出图形,再求解,能够使问题直观呈角度解决问题的方法,需要先画出图形,再求解,能够使问题直观呈 现,问现,问题较简单时,优越性较突出,动点多时,不容易画出来。题

15、较简单时,优越性较突出,动点多时,不容易画出来。数无形时不直观,形无数时难入微。数形结合解决问题,是一种好的解数无形时不直观,形无数时难入微。数形结合解决问题,是一种好的解决问题的方法。决问题的方法。1.线段的中点公式线段的中点公式拓广与探索:利用中点公式分析拓广与探索:利用中点公式分析 平面直角坐标系中,点平面直角坐标系中,点A坐标为坐标为(x1,y1),点,点B坐标为坐标为(x2,y2),则线段,则线段AB的中点的中点P的坐标为的坐标为 例例1 如图,已知点如图,已知点A(-2,1),B(4,3),则线段,则线段AB的中点的中点P的坐标是的坐标是_.(1,2)如图,在平面直角坐标系中,如图

16、,在平面直角坐标系中,ABCD的顶点坐标分别为的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),已知其中已知其中3个顶点的坐标,个顶点的坐标,如何确定第如何确定第4个顶点的坐标?个顶点的坐标?如图,已知如图,已知ABCD中中A(-2,2),B(-3,-1),C(3,1),则点,则点D的坐标是的坐标是_.(4,4)(-2,2)(-3,-1)(3,1)(4,4)拓广与探索:利用中点公式分析拓广与探索:利用中点公式分析结果表述也可以化为结果表述也可以化为“对点法对点法”的形式的形式(x1,y1)(x2,y2)(x4,y4)(x3,y3)x1+x3=x2+x4,y1+y3=y2+y4.拓广与探索:利用中点公式分析拓广与探索:利用中点公式分析殊途同归殊途同归谢谢观赏勤能补拙,学有成就!2023/2/522

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁