2019高中数学 第1章 统计案例章末复习提升练习 苏教版选修1-2.doc

上传人:随风 文档编号:712965 上传时间:2019-06-06 格式:DOC 页数:7 大小:342KB
返回 下载 相关 举报
2019高中数学 第1章 统计案例章末复习提升练习 苏教版选修1-2.doc_第1页
第1页 / 共7页
2019高中数学 第1章 统计案例章末复习提升练习 苏教版选修1-2.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2019高中数学 第1章 统计案例章末复习提升练习 苏教版选修1-2.doc》由会员分享,可在线阅读,更多相关《2019高中数学 第1章 统计案例章末复习提升练习 苏教版选修1-2.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、- 1 -第第 1 1 章章 统计案例统计案例1独立性检验利用2(其中nabcd)来确定在多大程度上认为“两个n(adbc)2 (ac)(bd)(ab)(cd)变量有相关关系” 应记熟2的几个临界值的概率2回归分析(1)分析两个变量相关关系常用:散点图或相关系数r进行判断在确认具有线性相关关系后,再求线性回归方程,进行预测(2)对某些特殊的非线性关系,可以通过变量转化,把非线性回归转化为线性回归,再进行研究题型一 独立性检验思想的应用独立性检验的基本思想是统计中的假设检验思想,类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即假设“两个分类变量没有关

2、系”成立,在该假设下我们构造的随机变量2应该很小,如果由观测数据计算得到的2的观测值很大,则在一定程度上说明假设不合理例 1 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选 200 只家兔做试验,将这200 只家兔随机地分成两组,每组 100 只,其中一组注射药物A,另一组注射药物B.下表 1和表 2 分别是注射药物A和药物B后的试验结果(疱疹面积单位:mm2)表 1:注射药物A后皮肤疱疹面积的频数分布表- 2 -疱疹面积60,65)65,70)70,75)75,80)频数30402010表 2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积60,65)65,70)70,75)75,80)

3、80,85)频数1025203015完成下面 22 列联表,能否在犯错误概率不超过 0.001 的前提下,认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异” 表 3:疱疹面积小于 70mm2疱疹面积不小于 70mm2合计注射药物Aab注射药物Bcd合计n解 列出 22 列联表疱疹面积小于 70mm2疱疹面积不小于 70mm2总计注射药物Aa70b30100注射药物Bc35d65100合计10595n200224.56,200 (70 6535 30)2 100 100 105 95由于210.828,所以在犯错误概率不超过 0.001 的前提下,认为“注射药物A后的疱疹面积与注射药物

4、B后的疱疹面积有差异” 跟踪演练 1 某企业为了更好地了解设备改造与生产合格品的关系,随机抽取了 180 件产品进行分析其中设备改造前生产的合格品有 36 件,不合格品有 49 件;设备改造后生产的合格品有 65 件,不合格品有 30 件,根据上面的数据,你能得出什么结论?解 根据已知条件列出 22 列联表:合格品不合格品合计设备改造后653095设备改造前364985合计10179180提出假设H0:设备改造与生产合格品无关由公式得212.379.180 (65 4936 30)2 95 85 101 79- 3 -210.828,我们有 99.9%的把握认为设备改造与生产合格品有关系题型二

5、 线性回归分析进行线性回归分析的前提是两个变量具有线性相关关系,否则求出的线性回归方程就没有实际意义,所以必须先判断两个变量是否线性相关分析判断两个变量是否线性相关的常用方法是利用散点图进行判断,若各数据点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系此方法直观、形象,但缺乏精确性例 2 在一段时间内,分 5 次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为12345价格x1.41.61.822.2需求量y1210753已知xiyi62,x16.6.5i15i1 2i(1)画出散点图;(2)求出y对x的线性回归方程;(3)如果价格定为 1.9 万元

6、,预测需求量大约是多少?(精确到 0.01t)解 (1)散点图如下图所示:(2)因为 91.8, 377.4,x1 5y1 5xiyi62,x16.6,5i15i1 2i所以 11.5,b5i1xiyi5x y5i1x2i5x2625 1.8 7.4 16.65 1.82 7.411.51.828.1,aybx故y对x的线性回归方程为 28.111.5x.y(3) 28.111.51.96.25(t)y故价格定为 1.9 万元,预测需求量大约为 6.25t.跟踪演练 2 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了 4 次试验,得到数据如下:零件的个数x(个)2345- 4

7、-加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求y关于x的线性回归方程 x ;yba(3)试预测加工 10 个零件需要的时间解 (1)散点图如图所示:(2) 3.5, 3.5,x2345 4y2.5344.5 4iyi22.5334454.552.5,4 i1x49162554,4 i1x 2i 0.7,b52.54 3.5 3.5 544 3.523.50.73.51.05,a所求线性回归方程为 0.7x1.05.y(3)当x10 时, 0.7101.058.05,y预测加工 10 个零件需要 8.05 小时题型三 非线性回归分析非线性回归问题有时并

8、不给出经验公式这时我们可以画出已经数据的散点图,把它与已经学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量置换,把问题化为线性回归分析问题,使之得到解决例 3 下表是某年美国旧轿车价格的调查资料,今以x表示轿车的使用年数,y是表示相应的年均价格,求y关于x的回归方程.- 5 -使用年数x12345678910年均价格y(美元)2651194314941087765538484290226204解 数据对应的散点图如图 1,图 1可以发现,各点并不是基本处于一条直线附近,因此,y与x之间是非线性回归关系与已学函数图象比较,用 ex

9、来刻画题中模型更为合理,令 ln ,则 x ,题中数ybazyzba据变成如下表所示:x12345678910z7.8837.5727.3096.9916.6406.2886.1825.6705.4215.318相应的散点图如图 2,从图 2 可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合图 2由表中数据可得r0.996.即|r|r0.050.632,所以有 95%的把握认为x与z之间具有线性相关关系,由表中数据得 0.298, 8.165,ba所以 0.298x8.165,最后代回 ln ,即 e0.298x8.165为所求zzyy跟踪演练 3 下表所示是一组试验数据:

10、x0.50.251 60.1250.1- 6 -y64138205285360(1)作出x与y的散点图,并判断是否线性相关;(2)若变量y与 成线性相关关系,求出y对x的回归方程,并观测x10 时y的值1 x解 (1)散点图如图:由散点图可知y与x不具有线性相关关系,且样本点分布在反比例函数y a的周围b x(2)令x ,yy由已知数据制成下表1 x序号xiyix2iy2ixiyi12644409612824138161904455236205364202512304828564812252280510360100129600360030105222027599077906, 210.4,xy

11、故 5()240, 5()254649.2,5 i1x 2ix5 i1y 2iyr0.9997,由于|r|r0.050.878,说明y与x具有很强的线77905 6 210.440 54649.2性关系,计算知 36.95, 210.436.95611.3,所以y11.336.95x.所ba求y对x的回归方程y11.3.36.95 x当x10 时,y11.37.605.36.95 101独立性检验是对两个分类变量间是否存在相关关系的一种案例分析方法,而利用假设的- 7 -思想方法,计算出某一个随机变量2的值来判断更精确些2建立回归模型的基本步骤:(1)确定研究对象(2)画出散点图,观察它们之间的关系(3) 由经验确定回归方程的类型(4)按照一定的规则估计回归方程中的参数.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁