2023年人教版初中数学教案三篇.docx

上传人:l*** 文档编号:71270410 上传时间:2023-02-01 格式:DOCX 页数:70 大小:49.36KB
返回 下载 相关 举报
2023年人教版初中数学教案三篇.docx_第1页
第1页 / 共70页
2023年人教版初中数学教案三篇.docx_第2页
第2页 / 共70页
点击查看更多>>
资源描述

《2023年人教版初中数学教案三篇.docx》由会员分享,可在线阅读,更多相关《2023年人教版初中数学教案三篇.docx(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年人教版初中数学教案三篇时间:2023-09-25 人教版初中数学教案三篇。 每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“人教版初中数学教案三篇”,仅供参考,欢迎大家阅读。 教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。小编准备了人教版初中数学教案三篇,供大家参考! 公式法 理解一元二次方程求根公式的推导过程,了解公

2、式法的概念,会熟练应用公式法解一元二次方程复习具体数字的一元二次方程配方法的解题过程,引入ax2bxc0(a0)的求根公式的推导,并应用公式法解一元二次方程 重点求根公式的推导和公式法的应用难点一元二次方程求根公式的推导 一、复习引入1前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x24(2)(x2)27提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程)2面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式)(学生活动)用配方法解方程2x237x

3、(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(xp)2q的形式,如果q0,方程的根是xpq;如果q0,方程无实根二、探索新知用配方法解方程:(1)ax27x30(2)ax2bx30如果这个一元二次方程是一般形式ax2bxc0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题问题:已知ax2bxc0(a0),试推导它的两个根x1bb24ac2a,x2bb24ac2a(这个方程一定有解吗?什

4、么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去解:移项,得:ax2bxc二次项系数化为1,得x2baxca配方,得:x2bax(b2a)2ca(b2a)2即(xb2a)2b24ac4a24a20,当b24ac0时,b24ac4a20(xb2a)2(b24ac2a)2直接开平方,得:xb2ab24ac2a即xbb24ac2ax1bb24ac2a,x2bb24ac2a由上可知,一元二次方程ax2bxc0(a0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2bxc0,当b2

5、4ac0时,将a,b,c代入式子xbb24ac2a就得到方程的根(2)这个式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根例1用公式法解下列方程:(1)2x2x10(2)x21.53x(3)x22x120(4)4x23x20分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可补:(5)(x2)(3x5)0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6)四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:

6、1)将所给的方程变成一般形式,注意移项要变号,尽量让a0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b24ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果(4)初步了解一元二次方程根的情况五、作业布置教材第17页习题4 因式分解法 掌握用因式分解法解一元二次方程通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法因式分解法解一元二次方程,并应用因式分解法解决一些具体问题 重点用因式分解法解一元二次方程难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便 一、复习引入(学生活动)解下列方程:(1)2x2x0(用配方法)(2)3x

7、26x0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解二、探索新知(学生活动)请同学们口答下面各题(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解因此,上面两个方程都可以写成:(1)x(2x1)0(2)3x(x2)0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x0或2x10,所以x10,x212.(2)3x0或x20,所以x10,x22.(以上解法是如何实现降

8、次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法例1解方程:(1)10x4.9x20(2)x(x2)x20(3)5x22x14x22x34(4)(x1)2(32x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为0,另一边可分解为两个一次因式乘积)练习:下面一元二次方程解法中,正确的是()A(x3)(x5)102,x310,x52,x113,x27B(25x)(5x2)20,(5x2)(5x3)0,x125,x235C(x2)24x0,

9、x12,x22Dx2x,两边同除以x,得x1三、巩固练习教材第14页练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11 一元二次方程的根与系数的关系 1掌握一元二次方程的根与系数的关系并会初步应用2培养学生分析、观察、归纳的能力和推理论证的能力3渗透由特殊到一般,再由一般到特殊的认识事物的规律4培养学生去发现规律的积极性及勇于探索的精神 重点根与系数的关系及其推导难点正确理解根与系数的关系一元二次方程根与

10、系数的关系是指一元二次方程两根的和、两根的积与系数的关系 一、复习引入1已知方程x2ax3a0的一个根是6,则求a及另一个根的值2由上题可知一元二次方程的系数与根有着密切的关系其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3由求根公式可知,一元二次方程ax2bxc0(a0)的两根为x1bb24ac2a,x2bb24ac2a.观察两式右边,分母相同,分子是bb24ac与bb24ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1x2 x1x2x22x0 x23x40 x25x60 观察上面的表格,你能得

11、到什么结论?(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2bxc0(a0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1x2 x1x22x27x40 3x22x50 5x217x60 小结:根与系数关系:(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q的关系是:x1x2p,x1x2q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零)(2)形如ax2bxc0(a0)的方程,可以先将二次项系数化为1,再

12、利用上面的结论即:对于方程ax2bxc0(a0)a0,x2baxca0x1x2ba,x1x2ca(可以利用求根公式给出证明)例1不解方程,写出下列方程的两根和与两根积:(1)x23x10(2)2x23x50(3)13x22x0 (4)2x26x3(5)x210 (6)x22x10例2不解方程,检验下列方程的解是否正确?(1)x222x10 (x121,x221)(2)2x23x80 (x17734,x25734)例3已知一元二次方程的两个根是1和2,请你写出一个符合条件的方程(你有几种方法?)例4已知方程2x2kx90的一个根是3,求另一根及k的值变式一:已知方程x22kx90的两根互为相反数

13、,求k;变式二:已知方程2x25xk0的两根互为倒数,求k.三、课堂小结1根与系数的关系2根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零四、作业布置1不解方程,写出下列方程的两根和与两根积(1)x25x30(2)9x2x2(3)6x23x20(4)3x2x102已知方程x23xm0的一个根为1,求另一根及m的值3已知方程x2bx60的一个根为2,求另一根及b的值 f132.CoM更多教案编辑推荐 人教版高中数学教案三篇 讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,小编准备了以下内容,希望对你有帮助! 篇一 教学目标 1。使学生掌握的概念,图象和

14、性质。 (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。 (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。 (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。 2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。 3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。 教学建议 教材分析 (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数

15、,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。 (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。 (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。 教法建议 (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 ,

16、等都不是。 (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。 关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。 教学设计示例 课题 教学目

17、标 1。 理解的定义,初步掌握的图象,性质及其简单应用。 2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。 3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。 教学重点和难点 重点是理解的定义,把握图象和性质。 难点是认识底数对函数值影响的认识。 教学用具 投影仪 教学方法 启发讨论研究式 教学过程 一。 引入新课 我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。 1。6。(板书) 这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题: 问题1:某种细胞*时,由1个*成2个,2个*

18、成4个,一个这样的细胞* 次后,得到的细胞*的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗? 由学生回答: 与 之间的关系式,可以表示为 。 问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。 由学生回答: 。 在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。 一。 的概念(板书) 1。定义:形如 的函数称为。(板书) 教师在给出定义之后再对定义作几点说明。 2。几点说明 (板书) (1) 关于对

19、 的规定: 教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。 若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。 (2)关于的定义域 (板书) 教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。 (3)关于是否是

20、的判断(板书) 刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。 (1) , (2) , (3) (4) , (5) 。 学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。 最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。 3。归纳性质 作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。 函数 1。定义域 : 2。值域: 3。奇偶性 :既不是奇函

21、数也不是偶函数 4。截距:在 轴上没有,在 轴上为1。 对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。) 在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。 此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出

22、光滑曲线。 二。图象与性质(板书) 1。图象的画法:性质指导下的列表描点法。 2。草图: 当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。 此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。 最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可

23、利用计算机再画出如 的图象一起比较,再找共性) 由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下: 以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。 填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。 3。性质。 (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。 (2) 时, 在定义域内为增函数, 时, 为减函数。 (3) 时, , 时, 。 总结之后,特别提醒学生记住函数的图象,有了图,从图中就

24、可以能读出性质。 三。简单应用 (板书) 1。利用单调性比大小。 (板书) 一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。 例1。 比较下列各组数的大小 (1) 与 ; (2) 与 ; (3) 与1 。(板书) 首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。 解: 在 上是增函数,且 1,。 解决后由教师小结比较大小的方法 (1) 构造函数的

25、方法: 数的特征是同底不同指(包括可转化为同底的) (2) 搭桥比较法: 用特殊的数1或0。 三。巩固练习 练习:比较下列各组数的大小(板书) (1) 与 (2) 与 ; (3) 与 ; (4) 与 。解答过程略 四。小结 1。的概念 2。的图象和性质 3。简单应用 五 。板书设计 篇二 教学目标 1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题. (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量

26、求另两个值; (3)会利用等差数列通项公式与前 项和的公式研究 的最值. 2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法. 3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学建议 (1)知识结构 本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而

27、后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题 (2)重点、难点分析 教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路 推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想 高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列

28、求和的思路上 (3)教法建议 本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用. 前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活. 强调从特殊到一般,再从一般到特殊的思考方法与研究方法. 补充等差数列前 项和的值、最小值问题. 用梯形面积公式记忆等差数列前 项和公式. 等差数列的前项和公式教学设计示例 教学目标 1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题. 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想. 教学重点,难点 教学重点是等差数列的前

29、 项和公式的推导和应用,难点是获得推导公式的思路. 教学用具 实物投影仪,多媒体软件,电脑. 教学方法 讲授法. 教学过程 一.新课引入 提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示) 问题就是(板书)“ ” 这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,每组数的和均

30、相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果. 我们希望求一般的等差数列的和,高斯算法对我们有何启发? 二.讲解新课 (板书)等差数列前 项和公式 1.公式推导(板书) 问题(幻灯片):设等差数列 的首项为 ,公差为 , 由学生讨论,研究高斯算法对一般等差数列求和的指导意义. 思路一:运用基本量思想,将各项用 和 表示,得 ,有以下等式 ,问题是一共有多少个 ,似乎与 的奇偶有关.这个思路似乎进行不下去了. 思路二: 上面的等式其实就是 ,为回避个数问题,做一个改写 , ,两式左右分别相加,得 , 于是有: .这就是倒序相加法. 思路三

31、:受思路二的启发,重新调整思路一,可得 ,于是 . 于是得到了两个公式(投影片): 和 . 2.公式记忆 用梯形面积公式记忆等差数列前 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前 项和的两个公式. 3.公式的应用 公式中含有四个量,运用方程的思想,知三求一. 例1.求和:(1) ; (2) (结果用 表示) 解题的关键是数清项数,小结数项数的方法. 例2.等差数列 中前多少项的和是9900? 本题实质是反用公式,解一个关于 的一元二次函数,注意得到的项数 必须是正整数. 三.小结 1.推导等差数列前 项和公式的思路; 2.公式的应用中的数学思想. 四.板书设计 篇三 1。5 (

32、1)充分条件与必要条件 一、教学目标设计 通过实例理解充分条件、必要条件的意义。 能够在简单的问题情境中判断条件的充分性、必要性。 二、教学重点及难点 充分条件、必要条件的判断; 充分条件、必要条件的判断方法。 三、教学流程设计 四、教学过程设计 一、概念引入 早在战国时期,墨经中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。 今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。 二、概念形成 1、 首先请同学们判断下列命题的真假 (1)若两三角形全等,则两三角形的

33、面积相等。 (2)若三角形有两个内角相等,则这个三角形是等腰三角形。 (3)若某个整数能够被4整除,则这个整数必是偶数。 (4) 若ab=0,则a=0。 解答:命题(2)、(3)、(4)为真。命题(4)为假; 2、请同学用推断符号写出上述命题。 解答:(1)两三角形全等 两三角形的面积相等。 (2) 三角形有两个内角相等 三角形是等腰三角形。 (3) 某个整数能够被4整除则这个整数必是偶数; (4)ab=0 a=0。 3、充分条件与必要条件 继续结合上述实例说明什么是充分条件、什么是必要条件。 若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,

34、可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立 充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。说明:可以解释为:为了使成立,具备条件就足够了。可进一步解释为:有它即行,无它也未必不行。结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。) 必要条件:如果,那么叫做的必要条件。 说明:可以解释为若,则叫做的必要条件,是的充分条件。无它不行,有它也不一定行结

35、合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。 回答上述问题(1)、(2)中的条件关系。 (1)中:两三角形全等是两三角形的面积相等的充分条件;两三角形的面积相等是两三角形全等的必要条件。 (2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。 4、拓广引申 把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢? 关系可分为四类: (1)充分不必要条件,即,而 (2)必要不充分条件,即,而 (3)

36、既充分又必要条件,即,又有 (4)既不充分也不必要条件,即,又有。 三、典型例题(概念运用) 例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4) (2) 是 的什么条件。 (3)a+b是1,b什么条件。 解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。 (2)充分不必要条件。 (3)必要不充分条件。 说明如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。要否定条件的充分性、必要性,则只需举一反例即可。 例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q: 灯亮。(补充例题) 说明图中含有

37、两个开关时,p表示其中一个闭合,另一个情况不确定。加强学科之间的横向沟通,通过图示,深化概念认识。 例3、探讨下列生活中名言名句的充要关系。(补充例题) (1)头发长,见识短。 (2)骄兵必败。 (3)有志者事竟成。 (4)春回大地,万物复苏。 (5)不入虎穴、焉得虎子 (6)四肢发达,头脑简单 说明通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。 四、巩固练习 1、课本p/22练习1。5(1) 2:填表(补充) p q p是q的 什么条件 q是p的 什么条件 两个角相等 两个角是对顶角 内错角相等 两直线平行 四边形对角线相等 四边形是平行边形 a=b ac=bc

38、说明通过练习,及时巩固所学新知,反馈教学效果。 五、课堂小结 1、本节课主要研究的内容: 推断符号, 充分条件的意义 命题充分性、必要性的判断。 必要条件的意义 2、 充分条件、必要条件判别步骤: 认清条件和结论。 考察p q和q p的真假。 3、充分条件、必要条件判别技巧: 可先简化命题。 否定一个命题只要举出一个反例即可。 将命题转化为等价的逆否命题后再判断。 六、课后作业 书面作业:课本p/24习题1。51,2,3。 五、教学设计说明 1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的

39、充分条件与必要条件。 2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。 3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。 4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、

40、相互交流中去给概念下定义,去体会概念的本质属性。 初中数学教案范文三篇 教育要使人愉快,要让一切的教育带有乐趣。小编小编整理了初中数学教案范文三篇,希望对你有帮助! 一元一次方程的应用 教学目标 1使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题; 2培养学生观察能力,提高他们分析问题和解决问题的能力; 3使学生初步养成正确思考问题的良好习惯 教学重点和难点 一元一次方程解简单的应用题的方法和步骤 课堂教学过程设计 一、从学生原有的认知结构提出问题 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若

41、能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题 例1 某数的3倍减2等于某数与4的和,求某数 (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)(3-1)=3 答:某数为3 (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4 解之,得x=3 答:某数为3 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一 我们知道方程是一个含有未知数的

42、等式,而等式表示了一个相等关系因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤 二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析: 1本题中给出的已知量和未知量各是什么? 2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15x千克,由题意,得 x-15x=42 500, 所以 x=50 000 答:原来有 50 000千克面粉 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁