《直线与圆的位置关系复习课lan.ppt》由会员分享,可在线阅读,更多相关《直线与圆的位置关系复习课lan.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、与圆有关的位置关系与圆有关的位置关系与圆有关的位置关系与圆有关的位置关系直线和圆的位置关系直线和圆的位置关系 直线和圆的位置直线和圆的位置相交相交相切相切相离相离图形图形公共点个数公共点个数圆心到直线距离圆心到直线距离d与半径与半径r的关系的关系公共点名称公共点名称直线名称直线名称210dr交点交点切点切点无无 割线割线 切线切线 无无OdrOldrO dr1、O的半径为的半径为r,直线直线a 与与 O的距离为的距离为d (1)r=4,d=3 O与与a (2)r=4,d=4 O与与a (3)r=4,d=7 O与与a 相离相离相交相交相切相切2、设、设 p的半径为的半径为4cm,直线直线l上一点
2、上一点A到圆心的距离为到圆心的距离为4cm,则直线则直线l与与 P的位置关系是的位置关系是()A、相交相交 B、相切相切 C、相离相离 D、相切或相交相切或相交D巩固与拓展巩固与拓展切线的判定方法有:切线的判定方法有:、切线的判定定理切线的判定定理。、比较法比较法(d=r):):直线到圆心的距离等于圆的半径。直线到圆心的距离等于圆的半径。、定义法定义法:直线与圆有一个公共点。直线与圆有一个公共点。切线的判定定理:切线的判定定理:经过半径外端经过半径外端并且垂直于这条半径的直线是圆并且垂直于这条半径的直线是圆的切线。的切线。l lA AO O O Ol lA AO Ol lA AO Ol lA
3、AO O判断下图直线判断下图直线l l是否是是否是O O的切线?的切线?并说明为什么。并说明为什么。证明一条直线为圆的切线时,必须证明一条直线为圆的切线时,必须两个条件缺一不可:两个条件缺一不可:过半径外端过半径外端垂直于这条半径。垂直于这条半径。已知已知A为为 O上的一点,过上的一点,过A作作 O的切线的切线a a切线的性质:切线的性质:1、圆的切线垂直过切点的半径圆的切线垂直过切点的半径、经过切点垂直于切线的直线必经过圆、经过切点垂直于切线的直线必经过圆心心.ABOT3(05,湖州)如图,湖州)如图,A,B是是 O的两点,的两点,AC是是 O的切线,的切线,B65则则BAC=()A、35B
4、、25C、50D、65B4、(05,温州温州)已知已知:PA为为 O的切线,的切线,A为切点,为切点,OB交交 O于点于点B,PB2,PA 4.O的半径的半径r=rr切线长定理切线长定理从圆外一点引圆的两条切线,它们从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连的切线长相等,圆心和这一点的连线平分两条切线的夹角线平分两条切线的夹角条件:条件:PA,PBPA,PB切切OO于于 A A、B B两点两点,结论结论:PA=PB PA=PB OPA=OPBOPA=OPB若连结两切点若连结两切点,交交于点于点,又能得到什么新的结论?,又能得到什么新的结论?垂直平分垂直平分如图:PA,PC分别
5、切圆O于点A,C两点,B为圆O上与A,C不重合的点,若P=50,ABC=_如图,AP=50,PA、PC、DE都为O的切线,则DOE为 。变式变式:改变切线改变切线的位置,则的位置,则DOE6565若若PA=2,则则 PED的的周长为周长为 若改变切线的位置呢?若改变切线的位置呢?41、如图、如图,AB是是 O的直径,的直径,O过过AC的中点的中点D,DEBC,垂足为垂足为E.由以上条件,你能推出哪些结论(至少由以上条件,你能推出哪些结论(至少2个)?说明理由(要个)?说明理由(要求:不再标注其他字母,寻找过程中所添加的辅助线不能出现求:不再标注其他字母,寻找过程中所添加的辅助线不能出现在结论中
6、)在结论中)(2 2)O上是否存在点上是否存在点C,使使 PBC为等边三角形?若存为等边三角形?若存在,请求出此时在,请求出此时PB的值,若的值,若不存在,请说明理由。不存在,请说明理由。2、已知,如图已知,如图,A是半径为是半径为2的的O上上一点,一点,P是是OA延长线上的动点,过延长线上的动点,过P点点作作O的切线为的切线为B.(1 1)当)当PB=4时,求时,求POPO 的值。的值。CDOAPB2、如图,由正方形、如图,由正方形ABCD的顶点的顶点A引一引一直线分别交直线分别交BD、CD及及BC的延长线于的延长线于E、F、G,O 是是CGF的外接圆的外接圆求证:求证:CE是是 O的切线。
7、的切线。12341 今天我们一起复习哪些圆的有关知识?今天我们一起复习哪些圆的有关知识?2 今天我们探究的问题都有什么特点?今天我们探究的问题都有什么特点?3 对今天的问题你还有什么困惑?对今天的问题你还有什么困惑?4 今天你有什么收获吗?今天你有什么收获吗?谢谢指导谢谢指导 再见再见8、如图,园林部门准备在公园的三条小道围、如图,园林部门准备在公园的三条小道围成的地块内建造一个圆形喷水池,要求面积尽量成的地块内建造一个圆形喷水池,要求面积尽量大。请问如何建造圆的面积最大?当圆的面积最大。请问如何建造圆的面积最大?当圆的面积最大时,圆的半径是多少?大时,圆的半径是多少?30m40m50mABCOr