《八年级数学下册勾股定理复习课ppt课件新人教版.ppt》由会员分享,可在线阅读,更多相关《八年级数学下册勾股定理复习课ppt课件新人教版.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、RJ八(下)教学课件第十七章 勾股定理复习课1.如果直角三角形两直角边分别为a、b,斜边 为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.在直角三角形中才可以运用2.勾股定理的应用条件一、勾股定理 3.勾股定理表达式的常见变形:a2c2b2,b2c2a2,ABCcab知识梳理知识梳理二、勾股定理的逆定理1.勾股定理的逆定理 如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.2.勾股数3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中一个叫做原命题,另一个叫做它的逆命题.ABCcab知识
2、梳理知识梳理 在RtABC中,ACB=90,CDAB于点D,AC=20,BC=15.(1)求AB的长;(2)求BD的长解:(1)在RtABC中,ACB=90,(2)(方法一)SABC=ACBC=ABCD,2015=25CD,CD=12在RtBCD中,考点1勾股定理及其应用例1考点讲练考点讲练(方法二)设BD=x,则AD=25-x.解得x=9.BD=9.解题技巧:对于本题类似的模型,若已知两直角边求解题技巧:对于本题类似的模型,若已知两直角边求斜边上的高常需结合面积的两种表示法起来考查,若斜边上的高常需结合面积的两种表示法起来考查,若是同本题是同本题(2)中两直角三角形共一边的情况,还可利用中两
3、直角三角形共一边的情况,还可利用勾股定理列方程求解勾股定理列方程求解.考点讲练考点讲练1.RtABC中,斜边BC=2,则AB2+AC2+BC2的值为 ()A.8 B.4 C.6 D.无法计算 A3.一直角三角形的三边分别为2、3、x,那么以x为边 长的正方形的面积为_.2.如图,C=ABD=90,AC=4,BC=3,BD=12,则AD的长为_13或5 13 考点讲练考点讲练练一练练一练4已知RtABC中,C=90,若a+b=14cm,c=10cm,求ABC的面积.解:a+b=14,(a+b)2=196.又a2+b2=c2=100,2ab=196-(a2+b2)=96,ab=24考点讲练考点讲练
4、 我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?例2考点讲练考点讲练解:如图,设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺.在直角三角形ABC中,BC=5尺,由勾股定理,得BC2+AC2=AB2,即 52+x2=(x+1)2,25+x2=x2+2x+1,2x=24,x=12,x+1=13.即水池的水深12尺,这根芦苇长13尺.DBCA考点讲练考点讲练 如图所示,一只蚂蚁从
5、实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,问怎样走路线最短?最短路线长为多少?解析:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式:沿ABB1A1和A1 B1C1D1面;沿ABB1A1和BCC1B1面;沿AA1D1D和A1B1C1D1面.把三种方式分别展成平面图形如下:例3考点讲练考点讲练解:在RtABC1中,在RtACC1中,在RtAB1C1中,沿路径走路径最短,最短路径长为5.考点讲练考点讲练解题技巧:化折为直:长方体中求两点之间的最短距解题技巧:化折为直:长方体中求两点之间的最短距离,展开方法有多种,一般沿最长棱展开,距离最短离,展开方法有多种,一般沿最长棱展开,距离最
6、短.1.现有一长5米的梯子架靠在建筑物的墙上,它们的 底部在地面的水平距离是3米,则梯子可以到达建 筑物的高度是_米4考点讲练考点讲练练一练练一练在RtABO中,OA2米,DCOB1.4米,AB2221.422.04.42.61.4,1.421.96,2.041.96,卡车可以通过,但要小心解:如图,过半圆直径的中点O,作直径的垂线交下底边于点D,取点C,使CD1.4米,过C作OD的平行线交半圆直径于点B,交半圆于点A.2.如图,某住宅社区在相邻两楼之间修建一个上方 是一个半圆,下方是长方形的仿古通道,现有一 辆卡车装满家具后,高4米,宽2.8米,请问这辆送 家具的卡车能否通过这个通道?考点讲
7、练考点讲练3.在O处的某海防哨所发现在它的北偏东60方向相 距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(1)此时快艇航行了多少米(即AB 的长)?北东OAB6045C解:根据题意,得AOC=30,COB=45,AO=1000米.AC=500米,BC=OC.在RtAOC中,由勾股定理,得BC=OC=考点讲练考点讲练3.在O处的某海防哨所发现在它的北偏东60方向相 距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(2)距离哨所多少米(即OB的长)?北东OAB6045C解:在RtBOC中,由勾股定理,得考点讲练
8、考点讲练 在ABC中,AB=c,BC=a,AC=b,2c-b=12,求ABC的面积解:由题意可设a=3k,则b=4k,c=5k.2c-b=12,10k-4k=12,k=2,a=6,b=8,c=10.62+82=102,a2+b2=c2,ABC为直角三角形,ABC的面积为 68=24 勾股定理的逆定理及其应用考点2例4考点讲练考点讲练 B港有甲、乙两艘渔船,若甲船沿北偏东60方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙船到P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?解:甲船航行的距离为BM=82=
9、16(n mile),乙船航行的距离为BP=152=30(n mile)162+302=1156,342=1156,BM2+BP2=MP2,MBP为直角三角形,MBP=90,乙船是沿着南偏东30方向航行的例5考点讲练考点讲练1.下列各组数中,是勾股数的为 ()A1,2,3 B4,5,6 C3,4,5 D7,8,92.已知下列图形中的三角形的顶点都在正方形的格 点上,可以判定三角形是直角三角形的有_(2)(4)C考点讲练考点讲练练一练练一练3.如图,在四边形ABCD中,AB=20 cm,BC=15 cm,CD=7 cm,AD=24 cm,ABC=90猜想A与 C关系并加以证明解:猜想A+C=18
10、0证明如下:连结AC.ABC=90,在RtABC中,由勾股定理,得 AD2+DC2=625=252=AC2,ADC是直角三角形,且D=90.DAB+B+BCD+D=360,DAB+BCD=180,即A+C=180考点讲练考点讲练勾股定理与折叠问题 如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,求ABE的面积.解:长方形折叠,使点D与点B重合,ED=BE.设AE=x cm,则ED=BE=(9-x)cm.在RtABE中,AB2+AE2=BE2,32+x2=(9-x)2,解得x=4.ABE的面积为 4 3 =6(cm2).考点3例6考点讲练考点讲
11、练解题技巧:勾股定理可以直接解决直角三角形中已解题技巧:勾股定理可以直接解决直角三角形中已知两边求第三边的问题;如果只知一边和另两边的知两边求第三边的问题;如果只知一边和另两边的关系时,也可用勾股定理求出未知边,这时往往要关系时,也可用勾股定理求出未知边,这时往往要列出方程求解列出方程求解如图,有一张直角三角形纸片,两直角边AC6 cm,BC8 cm,将ABC折叠,使点B与点A重合,折痕是DE,则CD的长为 1.75cm考点讲练考点讲练练一练练一练方程思想方程思想 如图,在ABC中,AB=17,BC=9,AC=10,ADBC于点D.试求ABC的面积解:在RtABD和RtACD中,AB2-BD2
12、=AD2,AC2-CD2=AD2.设DC=x,则BD=9+x,故172-(9+x)2=102-x2,解得x=6.AD2=AC2CD2=64,AD=8.SABC=98=36专题1例1专题讲练专题讲练解:当高AD在ABC内部时,如图.在RtABD中,由勾股定理,得BD2AB2AD2202122162,BD16.在RtACD中,由勾股定理,得CD2AC2AD215212281,CD9.BCBDCD25,ABC的周长为25201560.在ABC中,AB20,AC15,AD为BC边上的高,且AD12,求ABC的周长分类讨论思想分类讨论思想 专题2例2专题讲练专题讲练解题技巧:题中未给出图形,作高构造直角
13、三角形时,易漏掉钝角三角形的情况如在本例题中,易只考虑高AD在ABC内的情形,忽视高AD在ABC外的情形当高AD在ABC外部时,如图.同理可得,BD16,CD9.BCBDCD7,ABC的周长为7201542.综上所述,ABC的周长为42或60.专题讲练专题讲练 有一圆柱体高为8cm,底面圆的半径为2cm,如图.在AA1上的点Q处有一只蜘蛛,QA1=3cm,在BB1上的点P处有一只苍蝇,PB=2cm求蜘蛛爬行的最短路径长(取3).解:如图,沿AA1剪开,过Q作QMBB1于点M,连结QP.则PM=8-3-2=3(cm),QM=A1B1=22=6(cm).在RtQMP中,由勾股定理,得即蜘蛛爬行的最短路径长是 cm专题3转化思想转化思想 例3专题讲练专题讲练勾股定理直角三角形边长的数量关系勾股定理的逆定理直角三角形的判定互逆定理知识结构知识结构