《八年级数学下册勾股定理复习课ppt课件.ppt》由会员分享,可在线阅读,更多相关《八年级数学下册勾股定理复习课ppt课件.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小结和复习小结和复习第十七章 勾股定理 学习目标学习目标1.掌握勾股定理及逆定理的内容、证掌握勾股定理及逆定理的内容、证明及作用明及作用2.掌握常见题型的分析、解题掌握常见题型的分析、解题方法方法. .勾股定理:如果直角三角形的两直角边长分别为勾股定理:如果直角三角形的两直角边长分别为a,b, ,斜边长为斜边长为c c, ,那么那么a2+ +b2= =c2.abc知识回顾知识回顾温馨提示:温馨提示:据不完全统计,勾股定理的证明方法已经据不完全统计,勾股定理的证明方法已经多达多达400400多种,我们常用的方法是:多种,我们常用的方法是:面积法面积法abcS大正方形大正方形c2S小正方形小正方形
2、(b-a)S大正方形大正方形4S三角形三角形S小正方形小正方形赵爽弦图赵爽弦图证明:证明:b-a 勾股定理的逆定理:勾股定理的逆定理:如果三角形的三边长如果三角形的三边长a 、b 、c满足:满足: a2+b2=c2那么这个三角形是直角三角形那么这个三角形是直角三角形. .ACBabca2+b2=c2直角三角形直角三角形特别说明:特别说明:勾股定理的逆定理是直角三勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角长边的平方,即可判断此三角形为直角三角三角
3、 ,最长边所对角为直角,最长边所对角为直角.1.1.如图,如图,已知在已知在ABC 中,中,B =90,一直角边为一直角边为a,斜,斜边为边为b,则另一直角边,则另一直角边c满足满足c2 = .【思考思考】为什么不是为什么不是 ?222bac答案:因为答案:因为B B 所对的边是斜边所对的边是斜边. .答案:答案:222abc(一)知两边或一边一角型(一)知两边或一边一角型 题型一题型一勾股定理的直接应用勾股定理的直接应用考题分类考题分类首页首页 2.在在RtABC中,中,C=90.(1)如果)如果a=3,b=4, 则则c= ; (2)如果)如果a=6,c=10, 则则b=;(3)如果)如果c
4、=13,b=12,则,则a= ; (4)已知)已知b=3,A=30,求,求a,c.585(一)知两边或一边一角型(一)知两边或一边一角型答案答案: :(4 4)a= ,c= . .32 31.如图,已知在如图,已知在ABC 中,中,B =90,若,若BC4 , ABx ,AC=8-x,则,则AB= ,AC= .2.在在RtABC 中中,B=90,b=34,a:c=8:15,则则a= , c= .3.(选做题)在(选做题)在RtABC中,中,C=90,若,若a=12,c-b=8,求求b,c. 答案:答案: b=5,c=13.351630(二)知一边及另两边关系型(二)知一边及另两边关系型 1.
5、1. 对三角形边的分类对三角形边的分类. . 已知一个直角三角形的两条边长是已知一个直角三角形的两条边长是3 cm和和4 cm,求第三条边的长求第三条边的长注意:注意:这里并没有指明已知的两条边就是直角边,这里并没有指明已知的两条边就是直角边,所以所以4 cm可以是直角边,也可以是斜边,即应分情可以是直角边,也可以是斜边,即应分情况讨论况讨论答案:答案:5 cm或或 cm. .(三)分类讨论的题型(三)分类讨论的题型7已知:在已知:在ABC中,中,AB15 cm,AC13 cm,高,高AD12 cm,求求SABC答案:答案:第第1种情况:如图种情况:如图1,在,在RtADB和和RtADC中,分
6、别由勾股定理,中,分别由勾股定理,得得BD9,CD5,所以,所以BCBD+ CD9+514故故SABC84(cm2)第第2种情况,如图种情况,如图2,可得:,可得:SABC=24( cm2 ) 2. 对三角形高的分类对三角形高的分类. 图图1图图2(三)分类讨论的题型【思考思考】本组题,利用勾股定理解决了哪些类型本组题,利用勾股定理解决了哪些类型题目?注意事项是什么?题目?注意事项是什么? 利用勾股定理能求三角形的边长和高等线段利用勾股定理能求三角形的边长和高等线段的长度的长度. .注意没有图形的题目,先画图,再考注意没有图形的题目,先画图,再考虑是否需分类讨论虑是否需分类讨论. .1. 在一
7、块平地上,张大爷家屋前在一块平地上,张大爷家屋前9米远处有一棵大米远处有一棵大树在一次强风中,这棵大树从离地面树在一次强风中,这棵大树从离地面6米处折断倒米处折断倒下,量得倒下部分的长是下,量得倒下部分的长是10米出门在外的张大爷米出门在外的张大爷担心自己的房子被倒下的大树砸到大树倒下时能担心自己的房子被倒下的大树砸到大树倒下时能砸到张大爷的房子吗?()砸到张大爷的房子吗?()A一定不会一定不会B可能会可能会C一定会一定会D以上答案都不对以上答案都不对A题型二题型二用勾股定理解决简单的实际问题用勾股定理解决简单的实际问题答案:答案:是是证明:在证明:在RtACB中,中,BC=3=3,AB=5=
8、5,AC=4=4DC=4-1=3=4-1=3在在RtECD中,中,DC=3=3,DE=5=5,CE=4=4BE= =CE- -CB=1=1即梯子底端也滑动了即梯子底端也滑动了1 1米米2.2. 一架长一架长5 5米的梯子,斜立在一竖直的墙上,这时米的梯子,斜立在一竖直的墙上,这时梯子底端距墙底梯子底端距墙底3 3米米 如果梯子的顶端沿墙下滑如果梯子的顶端沿墙下滑1 1米,梯子的底端在水平方向沿一条直线也将滑动米,梯子的底端在水平方向沿一条直线也将滑动1 1米吗?用所学知识,论证你的结论米吗?用所学知识,论证你的结论思考:思考:利用勾股定理解题决实际问题时,基本步利用勾股定理解题决实际问题时,基
9、本步骤是什么?骤是什么?ZxxkZxxk答案:答案:1.1.把实际问题转化成数学问题,找出相应把实际问题转化成数学问题,找出相应的直角三角形的直角三角形. .2.2.在直角三角形中找出直角边,斜边在直角三角形中找出直角边,斜边. .3.3.根据已知和所求,利用勾股定理解决问题根据已知和所求,利用勾股定理解决问题. .1证明线段相等证明线段相等.已知:如图,已知:如图,AD是是ABC的高,的高,AB=10,AD=8,BC=12 .求证:求证: ABC是等腰三角形是等腰三角形. 答案:答案:证明:证明:AD是是ABC的高,的高,ADB=ADC=90.在在RtADB中,中,AB=10,AD=8,BD
10、=6 .BC=12, DC=6.在在RtADC中,中,AD=8,AC=10,AB=AC.即即ABC是等腰三角形是等腰三角形. 分析:分析:利用勾股定理求出线段利用勾股定理求出线段BD的长,也能的长,也能求出线段求出线段AC的长,最后得出的长,最后得出AB=AC,即可,即可.题型三题型三会用勾股定理解决较综合的问题会用勾股定理解决较综合的问题【思考思考1】由由AB=8,BC=10,你可以知道哪些线段长?你可以知道哪些线段长?请在图中标出来请在图中标出来.答案:答案:AD=10,DC=8 .2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折
11、叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.【思考思考2】 在在RtDFC中,你可以求出中,你可以求出DF的长吗?的长吗?请在图中标出来请在图中标出来.答案:答案: DF=6 .2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处
12、,已知处,已知AB=8,BC=10, 求求BE的长的长.答案:答案: AF=4 .【思考思考3】 由由DF的长,你还可以求出哪条线段长?的长,你还可以求出哪条线段长?请在图中标出来请在图中标出来.2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.【思考思考4】 设设BE = x,你可以用含有,你可以用含有x的式子表示出的式子表示出哪些线段长?请在图中标出来哪些线段长?请在图中标出来.答案:答案:EF = x,AE = 8-x,CF =
13、10 .2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长. Zxxk【思考思考5】 你在哪个直角三角形中,应用勾股定你在哪个直角三角形中,应用勾股定理建立方程?你建立的方程是理建立方程?你建立的方程是 .答案:答案:直角三角形直角三角形AEF, A=90, AE=8-x, .222)8(4xx2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边
14、的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.【思考思考6】 图中共有几个直角三角形?每一个直角图中共有几个直角三角形?每一个直角三角形的作用是什么?折叠的作用是什么?三角形的作用是什么?折叠的作用是什么?答案:答案: 四个,两个用来折叠,将线段和角等量转化,四个,两个用来折叠,将线段和角等量转化,一个用来知二求一,最后一个建立方程一个用来知二求一,最后一个建立方程.2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.【
15、思考思考7】 请把你的解答过程写下来请把你的解答过程写下来.答案:答案: 设设BE=x,依题意得:,依题意得:BCE FCE, BC=FC=10. BE=FE=x,ABCD是长方形是长方形 AB=DC=8 ,AD=BC=10,D=90,DF=6, AF=4,A=90, AE=8-x , ,解得,解得 x = 5 .BE的长为的长为5.222)8(4xx3.做高线,构造直角三角形做高线,构造直角三角形.已知:如图,在已知:如图,在ABC中,中,B=45,C=60,AB=2.求(求(1)BC 的长;(的长;(2)SABC . 分析分析:由于本题中的:由于本题中的ABC不是直角三角形,所以添不是直角
16、三角形,所以添加加BC边上的高这条辅助线,就可以求得边上的高这条辅助线,就可以求得BC及及SABC .361 .361 答案:答案:过点过点A作作ADBC于于D,ADB=ADC=90.在在ABD中,中,ADB=90,B=45,AB=2,AD=BD= .在在ACD中,中,ADC=90,C=60,AD= ,CD= ,BC= ,SABC =1+3.3.做高线,构造直角三角形做高线,构造直角三角形. .已知:如图,在已知:如图,在ABCABC中,中,B=45,C=60,AB=2.求(求(1 1)BC 的长;(的长;(2 2)S SABCABC . . 22233思考思考 :在不是直角三角形中如何求线段
17、长和面积? 解一般三角形的问题常常通过作高转化成直角三解一般三角形的问题常常通过作高转化成直角三角形,利用勾股定理解决问题角形,利用勾股定理解决问题.思考:思考:利用勾股定理解决综合题的基本步骤是什么?利用勾股定理解决综合题的基本步骤是什么?1.1. 画图与标图,根据题目要求添加辅助线,构造画图与标图,根据题目要求添加辅助线,构造直角三角形直角三角形. .2.2. 将已知量与未知量集中到同一个直角三角形中将已知量与未知量集中到同一个直角三角形中. .3.3. 利用勾股定理列出方程利用勾股定理列出方程. . 4.4. 解方程,求线段长,最后完成解题解方程,求线段长,最后完成解题. .1 1下列线
18、段不能组成直角三角形的是(下列线段不能组成直角三角形的是( ) A Aa=8=8,b=15=15,c=17 B=17 Ba=9=9,b=12=12,c=15=15 C Ca= = ,b= = ,c= D= Da:b:c=2=2:3 3:4 42.2.如图,在由单位正方形组成的网格图中标有如图,在由单位正方形组成的网格图中标有AB, ,CD, ,EF, ,GH四条线段,其中能构成一个直角三角形三边四条线段,其中能构成一个直角三角形三边的是()的是()CD,EF,GH AB,EF,GH AB,CD,GH AB,CD,EFCEBHDFAG532DB题型四题型四勾股定理的逆定理的应用勾股定理的逆定理的
19、应用已知:如图,四边形已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3, 且且ABBC.求四边形求四边形 ABCD的面积的面积. 分析:分析:本题解题的关键是恰当的添加辅助线,利用勾股定理本题解题的关键是恰当的添加辅助线,利用勾股定理的逆定理判定的逆定理判定ADC的形状为直角三角形,再利用勾股定理的形状为直角三角形,再利用勾股定理解题解题.答案:答案:连接连接AC,ABBC,ABC=90.在在ABC中,中,ABC=90,AB=1,BC=2,AC= .CD=2,AD=3, ACD是直角三角形;是直角三角形;四边四边形的面积为形的面积为1+ .55由形到数由形到数实际问题实际问题
20、(直角三角形边长计算直角三角形边长计算)勾股定理勾股定理勾股定理的勾股定理的逆定理逆定理实际问题实际问题(判定直角三角形判定直角三角形)由数到形由数到形互逆互逆 定理定理小结小结首页首页勾股定理勾股定理勾股定理的逆定理勾股定理的逆定理题题设设在在RtABC 中中,C=900在在ABC 中中, 三边三边a,b,c满足满足a2+b2=c2结结论论a2+b2=c2C=900作作用用1.用勾股定理进行计算用勾股定理进行计算2.证明与平方有关的问题证明与平方有关的问题3.解决实际问题解决实际问题1.判断某三角形是否为判断某三角形是否为直角三角形直角三角形2.解决实际问题解决实际问题联联系系1.两个定理都
21、与两个定理都与“三角形的三边关系三角形的三边关系a2+b2=c2”有关有关;2.都与直角三角形有关;都与直角三角形有关;3.都是数形结合思想的体现都是数形结合思想的体现.1.有四个三角形,分别满足下列条件:有四个三角形,分别满足下列条件:一个内角等于另两个内角之和;一个内角等于另两个内角之和;三个角之比为三个角之比为3:4:5;三边之比分别为三边之比分别为7、24、25;三边之比为三边之比为5:12:13其中直角三角形有(其中直角三角形有( )A.1个个 B.2个个 C.3个个 D.4个个C当堂检测当堂检测首页首页2.观察下列图形,正方形观察下列图形,正方形1的边长为的边长为7,则正方形,则正方形2、3、4、5的面积之和为的面积之和为 .493.折叠矩形折叠矩形ABCD的一边的一边AD,折痕为,折痕为AE,且使,且使D落在落在BC边上的点边上的点F处,已知处,已知AB=8cm,BC=10cm,则点则点F的坐标是的坐标是 ,点,点E的坐标是的坐标是 。第第2题图题图第第3题图题图(6 6,0 0)(10,310,3)4.