椭圆及其标准方程精品教案.doc

上传人:可**** 文档编号:70077074 上传时间:2023-01-14 格式:DOC 页数:2 大小:30.54KB
返回 下载 相关 举报
椭圆及其标准方程精品教案.doc_第1页
第1页 / 共2页
椭圆及其标准方程精品教案.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《椭圆及其标准方程精品教案.doc》由会员分享,可在线阅读,更多相关《椭圆及其标准方程精品教案.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、椭圆及其标准方程精品教案椭圆及其标准方程【教材分析】用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线.圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。解

2、析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。在第七章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值。【教学目标】1知识与技能目标:理解椭圆的定义。掌握椭圆的标准方程,在

3、化简椭圆方程的过程中提高学生的运算能力。2过程与方法目标:经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力.巩固用坐标化的方法求动点轨迹方程.对学生进行数学思想方法的渗透,培养学生利用数学思想方法分析和解决问题的意识.3情感态度价值观目标:充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识.重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣。通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风.

4、通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心。【教学过程】1教学的第一个问题可能是椭圆是怎样画出的。教学中通过椭圆与圆的关系,让学生观察与操作,利用水杯及细绳建立直观的概念,要鼓励学生大胆操作。问题解决方案一:学生可能提出将圆柱形水杯换成圆锥。(解释方法一致)问题解决方案二:两定点距离、绳长与图形的关系,通过操作,完善定义。2教学的第二个问题是椭圆标准方程的推导与化简中含有两个根式的等式化简.问题解决方案:由于用两边同时平方法化简较为繁琐,有些学生完成可能的有困难,老师要及时加以指导。如果学生有能力掌握,可运用方案二“等差数列法”或方案三“三角换元法”降低难度。3教学的第三个问题可能是竖椭圆方程的得出。问题解决方案:可以利用类比“化归”的思想,通过翻折和旋转的方式实现图形变换,从而利用焦点在轴上椭圆的标准方程得到焦点在轴上椭圆的标准方程,避免繁琐、重复的推导过程。凤凰出版传媒集团版权所有网站地址:南京市湖南路1号B座808室联系电话:025-83657815Mail:admin

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁