空间向量及其加减数乘运算精选PPT.ppt

上传人:石*** 文档编号:70026668 上传时间:2023-01-14 格式:PPT 页数:51 大小:3.83MB
返回 下载 相关 举报
空间向量及其加减数乘运算精选PPT.ppt_第1页
第1页 / 共51页
空间向量及其加减数乘运算精选PPT.ppt_第2页
第2页 / 共51页
点击查看更多>>
资源描述

《空间向量及其加减数乘运算精选PPT.ppt》由会员分享,可在线阅读,更多相关《空间向量及其加减数乘运算精选PPT.ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、空间向量及其加减数乘运算第1页,此课件共51页哦复习回顾:平面向量1、定义:既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。相等向量:长度相等且方向相同的向量ABCD第2页,此课件共51页哦2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba ba ba (k0)ka (k0)ka (k0)k空间向量的数乘空间向量的加减法第12页,此课件共51页哦ABCDABCDA1B1C1D1ABCDa平行六面体:平行四边形ABCDABCD平移向量 到A A1 1B B1 1

2、C C1 1D D1 1的轨迹所形成的几何体.a记做ABCD-AABCD-A1 1B B1 1C C1 1D D1 1第13页,此课件共51页哦平面向量概念加法减法运算运算律减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减运算空间向量具有大小和方向的量加法交换律加法结合律加法交换律加法:三角形法则或平行四边形法则减法:三角形法则加法结合律成立吗?具有大小和方向的量数乘分配律加法交换律数乘分配律第14页,此课件共51页哦加法结合律:abcab+c+()OABCab+abcab+c+()OABCbc+第15页,此课件共51页哦推广:(1)首尾相接的若干向量之和,等于由起始向量的起点

3、指向末尾向量的终点的向量;(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。第16页,此课件共51页哦做一做、想一想做一做、想一想ABCDA1B1C1D1第17页,此课件共51页哦变式一变式一ABCDA1B1C1D1第18页,此课件共51页哦变式二变式二ABCDA1B1C1D1EO第19页,此课件共51页哦例1:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1第20页,此课件共51页哦例1:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,化

4、简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1GM 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量第21页,此课件共51页哦例2:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。ABCDA1B1C1D1第22页,此课件共51页哦例2:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。ABCDA1B1C1D1第23页,此课件共51页哦例2:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D

5、 D1 1,求满足下列各式的x的值。ABCDA1B1C1D1第24页,此课件共51页哦例2:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。ABCDA1B1C1D1第25页,此课件共51页哦ABMCGD练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简第26页,此课件共51页哦ABMCGD(2)原式练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简第27页,此课件共51页哦ABCDDCB

6、A练习2在立方体在立方体ACAC1 1中中,点点E E是面是面A AC C 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.E第28页,此课件共51页哦ABCDDCBA练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面A AC C的中心的中心,求下列各式中的求下列各式中的x,y.x,y.第29页,此课件共51页哦ABCDDCBA练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.第30页,此课件共51页哦平面向量概念加法减法数乘运算运算律定义表示法相等向量减法:三角形法则加法:三角形法则或平行四

7、边形法则空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律小结加法交换律数乘分配律加法结合律类比思想 数形结合思想数乘:ka,k为正数,负数,零第31页,此课件共51页哦作业第32页,此课件共51页哦第33页,此课件共51页哦一、空间向量的数乘:一、空间向量的数乘:2、空间向量的数乘的性质、空间向量的数乘的性质(1)当)当时,时,与与同向同向(2)当)当时,时,与与反向反向1 1、定义:、定义:实数实数 与空间向量与空间向量 的乘积的乘积 仍然是一个向量,仍然是一个向量,称为空间向量的数乘称为空间向量的数乘(3)当)当时,时,第34页,此课件共51页哦2、空

8、间向量的数乘的运算律、空间向量的数乘的运算律(3)数乘结合律:)数乘结合律:(1)数乘分配律)数乘分配律1:(2)数乘分配律)数乘分配律2:第35页,此课件共51页哦1 1、定义:、定义:如果表示空间向量的有向线段所在直线互相平行如果表示空间向量的有向线段所在直线互相平行或重合,或重合,则这些向量叫做则这些向量叫做共线向量共线向量二、空间中的共线向量二、空间中的共线向量 (或平行向量)(或平行向量)第36页,此课件共51页哦2 2、空间中共线向量的性质、空间中共线向量的性质 (1 1)共线共线(2 2)非零共线向量的传递性:)非零共线向量的传递性:(3 3)零向量与任一向量共线,)零向量与任一

9、向量共线,第37页,此课件共51页哦(4 4)空间共线向量定理:)空间共线向量定理:对空间任意两个向量对空间任意两个向量有且只有一个实数有且只有一个实数 ,使使思考思考1 1:为什么要强调:为什么要强调思考思考2 2:这个定理有什么作用?:这个定理有什么作用?1 1、判定两个向量是否共线、判定两个向量是否共线2 2、判定三点是否共线、判定三点是否共线第38页,此课件共51页哦OABPa若若P P为为A,BA,B中点中点,则则向量参数表示式向量参数表示式推论推论:如果如果 为经过已知点为经过已知点A A且平行已知非零向且平行已知非零向量量 的直线的直线,那么对任一点那么对任一点O,O,点点P P

10、在直线在直线 上的充上的充要条件是存在实数要条件是存在实数t,t,满足等式满足等式 其中向量其中向量 叫做直线叫做直线 的方向向量的方向向量.若若 则则A、B、P三点共线。三点共线。第39页,此课件共51页哦共面向量共面向量:平行于同一平面的向量平行于同一平面的向量,叫做共面向量叫做共面向量.OA注意:注意:空间任意两个空间任意两个向量是共面的向量是共面的,但空,但空间任意三个向量就不一间任意三个向量就不一定共面的了。定共面的了。312第40页,此课件共51页哦 1、如果向量、如果向量e e1 1和和e e2 2是一平面内的两个不平行的是一平面内的两个不平行的向量,那么,该平面内的任一向量向量

11、,那么,该平面内的任一向量a与与 e1,e2有什么有什么关系关系?如果如果e1和和e2是一平面内的两个不平行的向量,是一平面内的两个不平行的向量,那么,该平面内的任一向量那么,该平面内的任一向量a,存在惟一的一对存在惟一的一对实数实数a a1 1,a a2 2,使使 a a1 e1 a2 e22、平面向量基本定理、平面向量基本定理复习:复习:第41页,此课件共51页哦 (1)必要性:必要性:如果向量如果向量c c与向量与向量a a,b b共面,共面,则通过平移一定可以使他们位于同一平面内,则通过平移一定可以使他们位于同一平面内,由平面向量基本定理可知,由平面向量基本定理可知,一定存在唯一的实数

12、对一定存在唯一的实数对x,y,使使c cx a ay b b3 3、共面向量定理:、共面向量定理:如果两个向量如果两个向量a a,b b不共线不共线,则向量,则向量c c与向量与向量a a,b b 共共面的充要条件是,存在面的充要条件是,存在唯一唯一的一对实数的一对实数 x x,y y,使,使 c cx x a ay y b b证明:证明:(2)充分性:充分性:如果如果c 满足关系式满足关系式c cxa ayb,则可选定一点则可选定一点O,作,作OAxa,OBACyb,于是,于是OCOAACxaybc,显然显然OA,OB,OC,都在平面,都在平面OAB内内,故故c,a,b共面共面BACOc第4

13、2页,此课件共51页哦共面向量定理的剖析共面向量定理的剖析 如果两个向量如果两个向量 a a,b b 不共线不共线,向量向量c c与向量与向量a a,b b共面共面存在唯一的一对实数存在唯一的一对实数x x,y y,使,使 c cx xa ay yb b c cx xa ay yb b向量向量c c与向量与向量a a,b b共面共面(性质性质)(判定判定)第43页,此课件共51页哦第44页,此课件共51页哦得证得证.为什么为什么?第45页,此课件共51页哦判定空间中三点判定空间中三点A A、B B、C C共线的常用方法:共线的常用方法:(1 1)只需得到存在实数)只需得到存在实数 ,使,使(2

14、 2)对空间任意点)对空间任意点O O,存在实数,存在实数t,t,使使特别地,当特别地,当t=1/2t=1/2时,时,此时,点此时,点C C恰为线段恰为线段ABAB的的中点中点第46页,此课件共51页哦例例1、已知、已知A,B,C三点不共线,对平面三点不共线,对平面ABC外的任一点外的任一点O,确定在下列条件下,确定在下列条件下,M是否与是否与A,B,C三点共面:三点共面:第47页,此课件共51页哦例例2(课本例课本例)如图,已知平行四边形如图,已知平行四边形ABCD,从平从平面面AC外一点外一点O引向量引向量 ,求证:求证:四点四点E、F、G、H共面;共面;平面平面EG/平面平面AC.第48

15、页,此课件共51页哦例例2(课本例课本例)已知已知 ABCD,从平面,从平面AC外一点外一点O引向量引向量 求证:求证:四点四点E、F、G、H共面;共面;平面平面AC/平面平面EG.证明:证明:四边形四边形ABCD为为()()代入)代入所以所以 E、F、G、H共面。共面。第49页,此课件共51页哦1.对于空间任意一点对于空间任意一点O,下列命题正确的是:,下列命题正确的是:(A)若若 ,则,则P、A、B共线共线(B)若若 ,则,则P是是AB的中点的中点(C)若若 ,则,则P、A、B不共线不共线(D)若若 ,则,则P、A、B共线共线2.已知点已知点M在平面在平面ABC内,并且对空间任意一点内,并

16、且对空间任意一点O,,则则x的值为的值为()第50页,此课件共51页哦1.下列下列说明正确的是:说明正确的是:(A)在在平面内共线的向量在空间不一定共线平面内共线的向量在空间不一定共线(B)在空间共线的向量在平面内不一定共线在空间共线的向量在平面内不一定共线(C)在平面内共线的向量在空间一定不共线在平面内共线的向量在空间一定不共线(D)在空间共线的向量在平面内一定共线在空间共线的向量在平面内一定共线2.下列说法正确的是:下列说法正确的是:(A)平面内的任意两个向量都共线平面内的任意两个向量都共线(B)空间的任意三个向量都不共面空间的任意三个向量都不共面(C)空间的任意两个向量都共面空间的任意两个向量都共面(D)空间的任意三个向量都共面空间的任意三个向量都共面第51页,此课件共51页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁