《(精品)23.5位似图形 (2).ppt》由会员分享,可在线阅读,更多相关《(精品)23.5位似图形 (2).ppt(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、ABACBCO23.523.5位似图形位似图形2018.52018.51.1.前面我们已经学习了图形的哪些变换?前面我们已经学习了图形的哪些变换?w平移平移:平移的方向:平移的方向,平移的距离平移的距离.w旋转旋转:旋转中心:旋转中心,旋转方向旋转方向,旋转角度旋转角度.w对称对称(轴对称与轴对称图形轴对称与轴对称图形,中心对称与中心中心对称与中心对称图形对称图形):对称轴对称轴,对称中心对称中心.注:图形这些不同的变换是我们学习几何必不可少的重要注:图形这些不同的变换是我们学习几何必不可少的重要工具工具,它不但装点了我们的生活它不但装点了我们的生活,而且是学习后续知识的基而且是学习后续知识的
2、基础础.w下面请欣赏如下图形的变换下面请欣赏如下图形的变换 下列图形中,每个图中的四边形下列图形中,每个图中的四边形ABCDABCD和和四边形四边形ABCDABCD都是相似图形都是相似图形.分别观察这五个分别观察这五个图,你发现每个图中的两个四边形各对应点的连线图,你发现每个图中的两个四边形各对应点的连线有什么特征?有什么特征?1 1位似图形的概念位似图形的概念如果两个图形不仅如果两个图形不仅相似相似,而且每组对应点所,而且每组对应点所在的直线都在的直线都经过同一点经过同一点,对应边互相平行或对应边互相平行或共线共线,那么这样的两个图形叫做位似图形那么这样的两个图形叫做位似图形,这这个点叫做位
3、似中心个点叫做位似中心.相似相似对应点的连对应点的连线相交一点线相交一点对应边平行或共线对应边平行或共线1.1.判断下列各对图形是不是位似图形判断下列各对图形是不是位似图形.(1 1)正五边形)正五边形ABCDEABCDE与正五边形与正五边形ABCDEABCDE;(2 2)等边三角形)等边三角形ABCABC与等边三角形与等边三角形ABC.ABC.思考:是否相似图形都是位似图形?思考:是否相似图形都是位似图形?是是是是判断下面的正方形是不是位似图形?判断下面的正方形是不是位似图形?(1)不是不是ACDBFEG显然,位似图形是相似图形的特殊情形显然,位似图形是相似图形的特殊情形.相似图形不相似图形
4、不一定是位似图形,可位似图形一定是相似图形一定是位似图形,可位似图形一定是相似图形 思考:位似图形有何性质?思考:位似图形有何性质?2.2.位似图形的性质位似图形的性质 性质:性质:位似图形上任意一对对应点到位似中心位似图形上任意一对对应点到位似中心的的距离之比距离之比等于等于相似比相似比.若若ABCABC与与A AB BC C的相似比为:的相似比为:1:21:2,则则OAOA:OAOA=()。)。OAABCBC1:2O.ABCACB.1 1如图,已知如图,已知ABCABC和点和点O.O.以以O O为位似中心,求作为位似中心,求作ABCABC的位似图形,并把的位似图形,并把ABCABC的边长扩
5、大到原来的两倍的边长扩大到原来的两倍.OA:OAOA:OA=OB:OB=OB:OB=OC:OC=OC:OC=1:2=1:2思考:还有没其他作法?思考:还有没其他作法?O.ABACBC如果位似中心跑到三角形内部呢?如果位似中心跑到三角形内部呢?DEFAOBC如何把三角形如何把三角形ABCABC放大为原来的放大为原来的2 2倍倍?DEFAOBC对应点连线都交于对应点连线都交于_对应线段对应线段_位似中心位似中心平行或在一条直线上平行或在一条直线上3。作位似图形。作位似图形总结画位似图形的一般步骤总结画位似图形的一般步骤:1.1.确定位似中心确定位似中心2 2、分别连接并延长位似中心和能代表、分别连
6、接并延长位似中心和能代表 原图的关键点原图的关键点3 3、根据相似比,确定能代表所作的位似、根据相似比,确定能代表所作的位似 图形的关键点图形的关键点4 4、顺次连接上述各点,得到放大或缩小、顺次连接上述各点,得到放大或缩小 的图形的图形ABACBCO以以0 0为中心把为中心把ABCABC缩小为原来的一半。缩小为原来的一半。ACBO如果如果OAB和和 OCD是位似图形,那么是位似图形,那么ABCD吗?为什么?吗?为什么?解解:ABCD.理由是:理由是:OAB和和 OCD是位似图形,是位似图形,OAB OCDOABCABCD.ABCDO 位似的作用位似的作用 位似可以将一个图形放大或缩小。位似可以将一个图形放大或缩小。至此,我们已经学习了四种变换:平移、轴至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变同吗?在图所示的图案中,你能找到这些变换吗?换吗?不经历风雨,怎么见彩虹不经历风雨,怎么见彩虹没有人能随随便便便成功没有人能随随便便便成功!待续待续同学们努力吧!同学们努力吧!2018.5.242018.5.24初三数学组初三数学组