2_平行线性质2.ppt

上传人:qwe****56 文档编号:69358990 上传时间:2023-01-02 格式:PPT 页数:14 大小:567.50KB
返回 下载 相关 举报
2_平行线性质2.ppt_第1页
第1页 / 共14页
2_平行线性质2.ppt_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2_平行线性质2.ppt》由会员分享,可在线阅读,更多相关《2_平行线性质2.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 平平 行行 线线 的的 性性 质质 (2)图形图形图形图形已知已知已知已知结果结果结果结果结论结论结论结论同同同同位位位位角角角角内内内内错错错错角角角角同同同同旁旁旁旁内内内内角角角角两直线平行两直线平行同旁内角互补同旁内角互补122324)abababccc平行线的性质平行线的性质平行线的性质平行线的性质小结小结a/b两直线平行两直线平行同位角相等同位角相等a/b两直线平行两直线平行内错角相等内错角相等a/b巩固练习:1 1、如果、如果AD/BCAD/BC,根据根据_ 可得可得B=B=1 12 2、如果如果AB/CDAB/CD,根据根据_ 可得可得D D1 13 3、如果如果AD/BCA

2、D/BC,根据根据_ 可得可得C C_180180 ABCD1两直线平行,同位角相等两直线平行,同位角相等两直线平行,内错角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,同旁内角互补DD 2、回答:、回答:如图如图(1)3=B,则 ,依据是(2)2+A=180,则 ,依据 (3)1=4,则 ,依据是(4)GC EF,AB EF,则 ,依据 同位角相等,两直线平行同位角相等,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行同位角相等,两直线平行同位角相等,两直线平行如果两条直线都与第三条直线平行,那么这两条直线也互相平行如果两条直线都与第三条直线平行,那么这两条直线也互

3、相平行.EFABDCABEFCGCGAB3如图:如图:AB/CD,则下列结论成立的有则下列结论成立的有 ()EAD=BDC,EAD=ADC,ADB=DBC,ABD=BDC,ABC+C=180O,DAB+ABC=180O。A 3个个 B 4个个 C 5个个 D 6个个 A4.如图,ABCD,1=45,D=C,依次求出,的度数5.在下图所示的个图中,ab,分别计算的度数DCAB1aaabbb111361206、如如 图图 2,已已 知知 ABCD,AEDF。请请 说说 明明BAE=CDF7。已知已知CD平分平分ACB,DE BC,AED=50,求,求EDC的度数的度数平行线的性质和判定有什么不同?

4、平行线的性质和判定有什么不同?同位角相等,同位角相等,同位角相等,同位角相等,两直线平行两直线平行两直线平行两直线平行两直线平行,同位角相等。两直线平行,同位角相等。两直线平行,同位角相等。两直线平行,同位角相等。判定定理判定定理判定定理判定定理性质定理性质定理性质定理性质定理条件条件条件条件 结论结论结论结论条件条件条件条件 结论结论结论结论思考思考:1 1 1 1、判定定理与性质定理的判定定理与性质定理的判定定理与性质定理的判定定理与性质定理的 条件与结论有什么关系?条件与结论有什么关系?条件与结论有什么关系?条件与结论有什么关系?互换。互换。互换。互换。内错角相等,内错角相等,内错角相等

5、,内错角相等,两直线平行两直线平行两直线平行两直线平行两直线平行,内错角相等。两直线平行,内错角相等。两直线平行,内错角相等。两直线平行,内错角相等。同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行两直线平行,同旁内角互补两直线平行,同旁内角互补两直线平行,同旁内角互补两直线平行,同旁内角互补2 2 2 2、使用判定定理时使用判定定理时使用判定定理时使用判定定理时是是是是 已知已知已知已知 ,说明,说明,说明,说明 ;角的相等或互补角的相等或互补角的相等或互补角的相等或互补二直线平行二直线平行二直线平行二直线平行 使用性质定理时使用性质定理时使用

6、性质定理时使用性质定理时是是是是 已知已知已知已知 ,说明,说明,说明,说明 。二直线平行二直线平行二直线平行二直线平行角的相等或互补角的相等或互补角的相等或互补角的相等或互补练习1:根据右边的图形,在括号内填上相应的理由:1C()ABCD()1B()ECBD()2B180()ECBD()ABCD()3C()ECBD()3B()ABCD()2C 180()EACDB1234同位角相等,两直线平行两直线平行,内错角相等已知已知已知已知已知已知内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,同旁内角互补说明:说明:、是平行线的判定的应用;是平行线的判定的应用;、是平行线的性质的应用是平行线的性质的应用例例1:如图如图1-15,已知,已知ABC+C=180,BD平分平分ABC。CBD与与D相等吗?请说相等吗?请说明理由。明理由。解:解:D=CBDABC+C=180(已知)已知)ABCD(同同旁旁内内角角互互补补,两两直直线平行)线平行)D=ABD(两两直直线线平平行行,内内错错角相等)角相等)CBD=ABD=D2、如如图图1,已已知知ADBC,BAD=BCD。判断判断AB与与CD是否平行,并说明理由是否平行,并说明理由A BC D图图13如图,已知AB CD,AD BC,AE 平分平分DAB,CF平分平分BCD求证:求证:AE CF

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁