《2019年中考数学复习 第二单元 方程与不等式 第6讲 一元二次方程练习.doc》由会员分享,可在线阅读,更多相关《2019年中考数学复习 第二单元 方程与不等式 第6讲 一元二次方程练习.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1第第 6 6 讲讲 一元二次方程一元二次方程重难点 1 1 一元二次方程根的判别式及根与系数的关系(2018随州)已知关于 x 的一元二次方程 x2(2k3)xk20 有两个不相等的实数根 x1,x2. (1)求 k 的取值范围;(2)若1,求 k 的值1 x11 x2【思路点拨】 (1)根据方程的系数结合根的判别式0,即可得出关于 k 的一元二次不等式,解之即可得 出 k 的取值范围;(2)根据根与系数的关系可得出 x1x22k3,x1x2k2,结合1 即可得出关于 k 的分式方程,1 x11 x2解之经检验即可得出结论 【自主解答】 解:(1)关于 x 的一元二次方程 x2(2k3)xk
2、20 有两个不相等的实数根, (2k3)24k20.解得 k .3 4(2)x1,x2是方程 x2(2k3)xk20 的实数根, x1x22k3,x1x2k2.1.1 x11 x2x1x2 x1x2(2k3) k2解得 k13,k21. 经检验,k13,k21 都是原分式方程的根又k ,3 4k3.方法指导 1 1判断一元二次方程根的情况,要明确 a,b,c 的值,然后比较 b24ac 与 0 的大小 2 2利用根与系数的关系解决有关代数式的问题,一般是通过变形将代数式转化为含有 x1x2与 x1x2的式子 解答关于二次项系数中含有未知数的一元二次方程时,容易忽视一元二次方程的前提条件是:二次
3、易错提示项系数 a0.因此,在解答过程中,要首先列出前提条件,即:在满足二次项系数 a0 的条件下求解 【变式训练 1 1】 (易错易混)若关于 x 的一元二次方程(k1)x24x10 有实数根,则 k 的取值范围是 k5 且 k1 【变式训练 2 2】 (2018南充)已知关于 x 的一元二次方程 x2(2m2)x(m22m)0. (1)求证:方程有两个不相等的实数根; (2)如果方程的两实数根为 x1,x2,且 x x 10,求 m 的值2 12 2解:(1)由题意可知,(2m2)24(m22m)40, 方程有两个不相等的实数根 (2)x1x22m2,x1x2m22m, x x (x1x2
4、)22x1x210.2 12 2(2m2)22(m22m)10. m22m30. m1 或 m3.(山西中考,7 分)解方程:2(x3)2x29.2解:2(x3)2(x3)(x3). 1 分 2(x3)2(x3)(x3)0. 2 分 (x3)(2x6x3)0. 3 分 (x3)(x9)0. 4 分 x30 或 x90. 5 分 x13,x29. 7 分重难点 2 2 一元二次方程的应用某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进 100 个某品牌的足 球供学生使用,经调查,该品牌足球 2016 年单价为 200 元,2018 年单价为 162 元 (1)求 20
5、16 年到 2018 年该品牌足球单价平均每年降低的百分率; (2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠? 【思路点拨】 (1)设 2016 年到 2018 年该品牌足球单价平均每年降低的百分率为 x,根据 2016 年及 2018 年 该品牌足球的单价,即可得出关于 x 的一元二次方程,解之取其小于 1 的值即可得出结论; (2)根据两商城的促销方案,分别求出在两商城购买 100 个该品牌足球的总费用,比较后即可得出结论 【自主解答】 解:(1)设 2016 年到 2018 年该品牌足球单价平均每年降低的百分率为 x,根据题意,得 200(1
6、x)2162.解得 x0.110%或 x1.9(舍去) 答:2016 年到 2018 年该品牌足球单价平均每年降低的百分率为 10%. (2)在 A 商城需要的费用为 16290(10099)14 742(元),在 B 商城需要的费用为 16210014 580(元)9 1014 74214 580. 答:去 B 商场购买足球更优惠【变式训练 3 3】 (2017兰州)王叔叔从市场上买一块长 80 cm,宽 70 cm的矩形铁皮,准备制作一个工具箱,如 图,他将矩形铁皮的四个角各剪掉一个边长 x cm的正方形后,剩余的部分刚好能围成一个底面积为 3 000cm2的无 盖长方形工具箱,根据题意列
7、方程为(C)A(80x)(70x)3 000 B80704x23 000 C(802x)(702x)3 000 D80704x2(7080)x3 000 【变式训练 4 4】 某商品的进价为每件 40 元当售价为每件 60 元时,每星期可卖出 300 件,现需降价处理,为占 有市场份额,且经市场调查:每降价 1 元,每星期可多卖出 20 件现在要使利润为 6 120 元,每件商品应降价(A) A3 元 B2.5 元 C2 元 D5 元 【变式训练 5 5】 (2018通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛, 赛制为单循环形式(每两队之间赛一场)现计划安排
8、 21 场比赛,应邀请多少个球队参赛?设邀请 x 个球队参赛,3根据题意,可列方程为 x(x1)211 2列一元二次方程解应用题的常见关系:方法指导(1)平均变化率问题:若设变化前的量为 a,变化后的量为 b,平均变化率为 x,则经过两次变化后的数量关系 为 a(1x)2b;(2)利润问题:利润售价成本;利润率100%;利润 成本(3)矩形面积问题 镶边矩形: 如图,镶边矩形 ABCD 中空白区域的面积为 S(a2x)(b2x);内嵌十字架型矩形: 如图,图 1 中阴影区域可以通过平移的方法变成图 2 中的样子,此时易得图 1 矩形 ABCD 中空白区域的面积为 S(ax)(bx)要检验方程的
9、解是否符合实际意义易错提示考点 1 1 一元二次方程及其解法1 1(2018临沂)一元二次方程 y2y 0 配方后可化为(B)3 4A(y )21 B(y )21 C(y )2 D(y )21 21 21 23 41 23 42 2(2018宁夏)若 2是方程 x24xc0 的一个根,则 c 的值是(A)3A1 B3 C1 D23333 3(2018铜仁)一元二次方程 x24x30 的解为(C) Ax11,x23 Bx11,x23 Cx11,x23 Dx11,x23 4 4(2018柳州)一元二次方程 x290 的解是 x13,x23 5 5(2018淮安)一元二次方程 x2x0 的根是 x1
10、0,x21 6 6(整体思想)(2018扬州)若 m 是方程 2x23x10的一个根,则 6m29m2 015 的值为 2_018 7 7(2018荆门)已知 x2 是关于 x 的一元二次方程 kx2(k22)x2k40 的一个根,则 k 的值为3 8 8(2018黄冈)一个三角形的两边长分别为 3 和 6,第三边长是方程 x210x210 的根,则三角形的周长为 16 9 9选择适当的方法解下列方程:4(1)x25x10; 解:x25x1.x25x( )21( )2.5 25 2(x )2.5 221 4x .5 2212所以 x1,x2.5 2125 212(2)(x3)(x1)3; 解:
11、方程化为 x24x0. x(x4)0. 所以 x10,x24.(3)2x22x50;2解:(2)242(5)48.2x.2 2 482 22 2 4 342 2 32所以 x1,x2.22 3222 32(4)(y2)2(3y1)2. 解:(y2)2(3y1)20. (y23y1)(y23y1)0. (4y1)(2y3)0. 4y10 或2y30.所以 y1 ,y2 .1 43 2考点 2 2 一元二次方程根的判别式 1010(2018上海)下列对一元二次方程 x2x30 根的情况的判断,正确的是(A) A有两个不相等实数根 B有两个相等实数根C有且只有一个实数根 D没有实数根 1111(20
12、18山西)下列一元二次方程中,没有实数根的是(C) Ax22x0 Bx24x10C.2x24x30 D3x25x2 1212(2018吉林)若关于 x 的一元二次方程 x22xm0 有两个相等的实数根,则 m 的值为1考点 3 3 一元二次方程根与系数的关系1313(2018眉山)若 , 是一元二次方程 3x22x90 的两根,则的值是(C) A. B C D.4 274 2758 2758 271414(2018长沙)已知关于 x 的方程 x23xa0 有一个根为 1,则方程的另一个根为 2 1515(2018德州)若 x1,x2是一元二次方程 x2x20 的两个实数根,则 x1x2x1x2
13、3考点考点 4 4 一元二次方程的应用一元二次方程的应用 1616(2018大连)如图,有一张矩形纸片,长 10 cm,宽 6 cm,在它的四角各减去一个同样的小正方形,然后折5叠成一个无盖的长方体纸盒若纸盒的底面(图中阴影部分)面积是 32 cm2,求剪去的小正方形的边长设剪去的 小正方形边长是 x cm,根据题意可列方程为(B)A10646x32 B(102x)(62x)32 C(10x)(6x)32 D1064x232 1717(2018绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为(C) A9 人 B10 人 C11 人 D12 人 1818(201
14、8沈阳)某公司今年 1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成 本是 361 万元假设该公司 2,3,4 月每个月生产成本的下降率都相同 (1)求每个月生产成本的下降率; (2)请你预测 4 月份该公司的生产成本 解:(1)设每个月生产成本的下降率为 x,根据题意,得 400(1x)2361,解得 x10.055%,x21.95(不合题意,舍去) 答:每个月生产成本的下降率为 5%. (2)361(15%)342.95(万元) 答:预测 4 月份该公司的生产成本为 342.95 万元1919(2018盐城)一商店销售某种商品,平均每天可售出 20 件,
15、每件盈利 40 元为了扩大销售、增加盈利,该 店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元,平均每天 可多售出 2 件 (1)若降价 3 元,则平均每天销售数量为 26 件; (2)当每件商品降价多少元时,该商店每天销售利润为 1 200 元? 解:设每件商品降价 x 元时,该商店每天销售利润为 1 200 元根据题意,得(40x)(202x)1 200. 整理,得 x230x2000.解得 x110,x220. 要求每件盈利不少于 25 元, x220 应舍去,x10. 答:当每件商品降价 10 元时,该商店每天销售利润为 1 200 元
16、2020(2018咸宁)已知一元二次方程 2x22x10 的两个根为 x1,x2,且 x1x2,下列结论正确的是(D)Ax1x21 Bx1x21 C|x1|x2| Dx x12 11 22121(2018潍坊)已知关于 x 的一元二次方程 mx2(m2)x 0 有两个不相等的实数根 x1,x2.若4m,m 41 x11 x2则 m 的值是(A) A2 B1 C2 或1 D不存在 2222(2018泰州)已知 x1,x2是关于 x 的方程 x2ax20 的两根,下列结论一定正确的是(A) Ax1x2 Bx1x20 Cx1x20 Dx10,x20 2323(2018包头)已知关于 x 的一元二次方
17、程 x22xm20 有两个实数根,m 为正整数,且该方程的根都是整 数,则符合条件的所有正整数 m 的和为(B)6A6 B5 C4 D3 2424(2018孝感)已知关于 x 的一元二次方程(x3)(x2)p(p1) (1)试证明:无论 p 取何值,此方程总有两个实数根; (2)若原方程的两根 x1,x2,满足 x x x1x23p21,求 p 的值2 12 2解:(1)证明:原方程可变形为 x25x6p2p0. (5)24(6p2p)25244p24p4p24p1(2p1)20, 无论 p 取何值,此方程总有两个实数根 (2)原方程的两根为 x1,x2, x1x25,x1x26p2p. 又x x x1x23p21,2 12 2(x1x2)23x1x23p21. 523(6p2p)3p21. 25183p23p3p21. 3p6. p2.2525(2018嘉兴)欧几里得的原本记载,形如 x2axb2的方程的图解法是:画RtABC,使ACB90,BC ,ACb,再在斜边 AB 上截取 BD .则该方程的一个正根是(B)a 2a 2AAC 的长 BAD 的长 CBC 的长 DCD 的长