《八年级数学上册《二元一次方程组》复习课件.ppt》由会员分享,可在线阅读,更多相关《八年级数学上册《二元一次方程组》复习课件.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五章 二元一次方程组,一.基本知识,二元一次方程,二元一次方程的一个解,二元一次方程组,二元一次方程组的解,解二元一次方程组,结构:,实际背景,二元一次方程及二元一次方程组,求解,应用,方法,思想,列二元一次方程组解应用题,二元一次方程与一次函数,解应用题,与一次函数的关系,消元,代入消员,加减消元,图象法,1.二元一次方程:通过化简后,只有两个未知数,并且所含未知数的项的次数都是1,系数都不是0的整式方程,叫做二元一次方程.,2.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.,3 .二元一次方程组:由两个一次方程组成,共有两个未知数的方程组,叫做二元一
2、次方程组.,二、有关概念,4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.,5.方程组的解法,根据方程未知数的系数特征确定用哪一种解法.,基本思想或思路消元,常用方法代入法和加减法,用代入法解二元一次方程组的步骤:,(1).求表达式:从方程组中选一个系数比较简单的方程,将此方程中的一个未知数,如y,用含x的代数式表示;,(2).把这个含x的代数式代入另一个方程中,消去y,得到一个关于x的一元一次方程;,(3).解一元一次方程,求出x的值;,(4).再把求出的x的值 代入变形后的方程,求出y的值.,用加减法解二元一次方程组的步骤:,(1).利用等式性质把一个或两
3、个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;,(2).把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程;,(3).解这个一元一次方程,求得一个未知数的值 ;,(4).把所求的这个未知的值代入方程组中较为简便的一个方程,求出另一个未知数,从而得到方程的解 .,6.列二元一次方程解决实际问题的一般步骤: 审: 设: 列: 解: 答:,审清题目中的等量关系,设未知数,根据等量关系,列出方程组,解方程组,求出未知数,检验所求出未知数是否符合题意,写出答案,7.二元一次方程与一次函数,三、知识应用,5.二元一次方程2m+3n=11 ( )A.任
4、何一对有理数都是它的解.B.只有两组解.C.只有两组正整数解.D.有负整数解.,C,6.若点P(x-y,3x+y)与点Q(-1,-5)关于X轴对称,则x+y=_.,3,7.已知|2x+3y+5|+(3x+2Y-25)2=0,则x-y=_.,-30,8.若两个多边形的边数之比是2:3,两个多边形的内角和是1980,求这两个多边形的边数.,6和9,9.方程组 中,x与y的和12,求k的值.,解得:K=14,解法1:解这个方程组,得,依题意:xy=12,所以(2k6) (4k)=12,解法2:根据题意,得,解这个方程组,得k=14,四.列二元一次方程组解应用题专题训练:,1.行程问题:,1.相遇问题
5、:甲的路程+乙的路程=总的路程 (环形跑道):甲的路程+乙的路程=一圈长,2.追及问题:快者的路程-慢者的路程=原来相距路 程 (环形跑道): 快者的路程-慢者的路程=一圈长,3.顺逆问题:顺速=静速+水(风)速 逆速=静速-水(风)速,例1.某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的速度行驶,就会提前24分钟 到达乙地,求甲、乙两地间的距离.,、,解:设甲、乙两地间的距离为S千米,规定时间为t小时,根据题意得方程组,例2.甲、乙二人以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2分钟相遇一次;如果同向而行,每
6、隔6分钟相遇一次.已知甲比乙跑得快,甲、乙每分钟各跑多少圈?,解:设甲、乙二人每分钟各跑x、y圈,根据题意得方程组,解得,答:甲、乙二人每分钟各跑 、 圈,,1.某学校现有甲种材料3,乙种材料29,制作A.B两种型号的工艺品,用料情况如下表:,(1)利用这些材料能制作A.B两种工艺品各多少件?(2)若每公斤甲.乙种材料分别为8元和10元,问制作A.B两种型号的工艺品各需材料多少钱?,2.图表问题,1.入世后,国内各汽车企业展开价格大战,汽车价格大幅下降,有些型号的汽车供不应求。某汽车生产厂接受了一份订单,要在规定的日期内生产一批汽车,如果每天生产35辆,则差10辆完成任务,如果每天生产40辆,
7、则可提前半天完成任务,问订单要多少辆汽车,规定日期是多少天?,3.总量不变问题,解:设订单要辆x汽车,规定日期是y天,根据题意得方程组,解这个方程组,得,答:订单要220辆汽车,规定日期是6天,4.销售问题:标价折扣=售价售价-进价=利润利润率=,1.已知甲.乙两种商品的标价和为100元,因市场变化,甲商品打9折,乙商品提价5,调价后,甲.乙两种商品的售价和比标价和提高了2,求甲.乙两种商品的标价各是多少?,答:甲种商品的标价是20元,乙种商品的标价是80元.,解:设甲、乙两种商品的标价分别为x、y元,根据题意,得,解这个方程组,得,例:某车间每天能生产甲种零件120个,或者乙种零件100个,
8、或者丙种零件200个,甲,乙,丙3种零件分别取3个,2个,1个,才能配一套,要在30天内生产最多的成套产品,问甲,乙,丙3种零件各应生产多少天?,5、配套问题,1已知函数 的图象交于点P,则点P的坐标为( )(A)(7,3) (B)(3,7) (C)(3,7) (D)(3,7)2已知直线 与 直线相交于点,则的值分别为( )(A) 2,3 (B) 3,2 (C) (D),五.二元一次方程与一次函数专题训练:,4.在同一直角坐标系内分别作出一次函数 和 的图象, 观察图象并回答问题:,(1)这两个图象有交点吗?交点坐标是什么?,(2)方程组 的解是什么?,(3)交点的坐标与方程组的解有什么关系?
9、,以下为备选练习题,例1.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时相遇,6小时后 ,甲所余路程为乙所余路程的2倍,求两人的速度.,解:设甲、乙的速度分别为x千米/小时和y千米/小时.,依题意可得:,解得,答:甲、乙的速度分别为4千米/小时和5千米/小时.,2. 下表是某一周甲、乙两种股票的收盘价(股票每天交易结束时的价格),张师傅在该周内持有若干甲、乙两种股票,若按照两种股票每天收盘价计算(不计手续费、税费行等),该人账户中星期二比星期一多获利200元,星期三比星期二多获利1300元,试问张师傅持有甲、乙股票各多少股?,12.5,13.3,星
10、期三,星期四,星期五,星期六,12.9,13.9,12.45,13.4,12.75,13.15,休盘,休盘,解:设张师傅持有甲种股票x股,乙种股票y股,根据题意,得,解得,答:张师傅持有甲种股票1000股,乙种股票1500股.,3.某中学组织初一学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出了一辆车,且其余客车恰好坐满.已知45座客车日租金为每辆220元, 60座客车日租金为每辆300元,试问:(1)初一年级的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租用更合算?,4.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元.问:比不打折少花多少钱?,