小学数学知识点例题精讲《余数性质(一)》学生版.docx

上传人:君**** 文档编号:68558570 上传时间:2022-12-28 格式:DOCX 页数:6 大小:324.23KB
返回 下载 相关 举报
小学数学知识点例题精讲《余数性质(一)》学生版.docx_第1页
第1页 / 共6页
小学数学知识点例题精讲《余数性质(一)》学生版.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《小学数学知识点例题精讲《余数性质(一)》学生版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《余数性质(一)》学生版.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、5-5-3.余数性质(三)教学目标1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题知识点拨一、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数.例如:23,16除以5的余数分别是3和1,所以23+1639除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数.例如:23,19除以5的余数分别是3和4,所以23+1942除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差.例如:23,16除以5的余数分别是3和1,

2、所以23167除以5的余数等于2,两个余数差312.当余数的差不够减时时,补上除数再减.例如:23,14除以5的余数分别是3和4,23149除以5的余数等于4,两个余数差为35443.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数.例如:23,16除以5的余数分别是3和1,所以2316除以5的余数等于313.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数.例如:23,19除以5的余数分别是3和4,所以2319除以5的余数等于34除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么与除以m的余数也相同二、弃九法原理在公元前9世

3、纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的.上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同.而我们在求一个自然数除以9所

4、得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”.所以我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和.以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可.利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确.例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一

5、定是正确的,那么它的等式2两端一定满足弃九法的规律.这个思想往往可以帮助我们解决一些较复杂的算式谜问题.例题精讲模块一、余数的加减法定理【例 1】 幼儿园的老师给班里的小朋友送来40只桔子,200块饼干,120块奶糖.平均分发完毕,还剩4只桔子,20块饼干,12粒奶糖.这班里共有_位小朋友.【例 2】 在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组这样的数组共有_组【例 3】 号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘? 【例

6、4】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是_【巩固】 用自然数n去除63,91,129得到的三个余数之和为25,那么n=_【例 5】 如果11!,122!,1233!12399100100!那么1!+2!+3!+100!的个位数字是多少?【例 6】 六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买成语大词典一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本这种成语大词典的定价是_元【巩固】 商店里有六箱货物,分别重15,16,18,19,20,3

7、1千克,两个顾客买走了其中的五箱已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是_千克【巩固】 六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另个人的2倍,则丙手中卡片上的数是_【例 7】 从1,2,3,4,2007中取N个不同的数,取出的数中任意三个的和能被15整除N最大为多少?【例 8】 一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁? 【例 9】 有三所学

8、校,高中A校比B校多10人,B校比C校多10人三校共有高中生2196人有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等三所学校总人数是5480人,那么A校总人数是_人模块二、余数的乘法定理【例 10】 求的余数【巩固】 求除以17的余数【巩固】 求被7除的余数【例 11】 求除以9的余数【例 12】 一个数被7除,余数是3,该数的3倍被7除,余数是 .【例 13】 在图表的第二行中,恰好填上这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3【例 14】 除以7的余数是多少?【例 15】 求的余数【巩固】 求除以7的余数【巩固】 求写成十进制数时的个位数【巩固】 的个位数字是_【巩固】 200720072007(2008个2007)的个位数字是 .【例 16】 今天是星期四,天之后将是星期几?【例 17】 求的最后两位数【例 18】 求的所有自然数中,有多少个整数a使与被7除余数相同?6

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁