2023年人教版八年级数学下册二次根式的知识点汇总超值哦.doc

上传人:教**** 文档编号:68532279 上传时间:2022-12-28 格式:DOC 页数:7 大小:249.54KB
返回 下载 相关 举报
2023年人教版八年级数学下册二次根式的知识点汇总超值哦.doc_第1页
第1页 / 共7页
2023年人教版八年级数学下册二次根式的知识点汇总超值哦.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2023年人教版八年级数学下册二次根式的知识点汇总超值哦.doc》由会员分享,可在线阅读,更多相关《2023年人教版八年级数学下册二次根式的知识点汇总超值哦.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:由于负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、-、(x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0知识点二:取值范围1、 二次根式故意义的条件:由二次根式的意义可知,当a0时,故意义,是二次根式,所以要使二次根式故意义,只要使被开方数大于或等于零即可。2、 二次根式无意义的条件:因负数没有算

2、术平方根,所以当a0时,没故意义。 例2当x是多少时,在实数范围内故意义?例3当x是多少时,+在实数范围内故意义?知识点三:二次根式()的非负性()表达a的算术平方根,也就是说,()是一个非负数,即0()。注:由于二次根式()表达a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。例4(1)已知y=+5,求的值(2)若+=0,求a2023+b2023的值知识点四:二次根式()的性质

3、()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 例1 计算 1()2 2(3)2 3()2 4()2例2在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a自身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不管a取何值,一定故意义;3、化简时,先将它化成

4、,再根据绝对值的意义来进行化简。 例1 化简 (1) (2) (3) (4)例2 填空:当a0时,=_;当aa,则a是什么数?例3当x2,化简-知识点六:与的异同点1、不同点:与表达的意义是不同的,表达一个正数a的算术平方根的平方,而表达一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的乘除1、 乘法(a0,b0) 反过来:=(a0,b0)2、除法=(a0,b0) 反过来,=(a0,b0) (思考:b的取值与a相同吗?为什么?不相同,由于b在分

5、母,所以不能为0) 例1计算 (1)4 (2) (3) (4) 例2 化简(1) (2) (3) (4) 例3判断下列各式是否对的,不对的的请予以改正: (1) (2)=4=4=4=8 例4计算:(1) (2) (3) (4) 例5化简: (1) (2) (3) (4)例6已知,且x为偶数,求(1+x)的值3、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式(熟记20以内数的平方;因数或因式间是乘积的关系,当被开方数是整式时要先判断是否可以分解因式,然后再观测各个因式的指数是否是2(或2的倍数),若是则说明具有能开方的因式,则不满足

6、条件,就不是最简二次根式)例1把下列二次根式化为最简二次根式(1) ; (2) ; (3) 4、化简最简二次根式的方法:(1) 把被开方数(或根号下的代数式)化成积的形式,即分解因式;(2) 化去根号内的分母(或分母中的根号),即分母有理化;(3) 将根号内能开得尽方的因数(或因式)开出来(此步需要特别注意的是:开到根号外的时候要带绝对值,注意符号问题)5.有理化因式:一般常见的互为有理化因式有如下几类: 与; 与;与; 与 说明:运用有理化因式的特点可以将分母有理化13、同类二次根式:被开方数相同的(最简)二次根式叫同类二次根式。 判断是否是同类二次根式时务必将各个根式都化为最简二次根式。如

7、与知识点八:二次根式的加减1、二次根式的加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。 例1计算(1)+ (2)+ 分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2计算 (1)3-9+3(2)(+)+(-)例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值2、二次根式的混合运算:先计算括号内,再乘方(开方),再乘除,再加减3、二次

8、根式的比较:(1)若,则有;(2)若,则有 (3)将两个根式都平方,比较平方后的大小,相应平方前的大小例4比较3与4的大小知识点九:二次根式的运算: (1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;假如被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式=(a0,b0); (b0,a0)(4)有理数的加法互换律、结合律,乘法互换律及结合律,乘法对加法的分派律以及多项式的乘法公式,都合用于二次根式的运算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁