2023年七年级下数学平面直角坐标系知识点总结.doc

上传人:可**** 文档编号:68459851 上传时间:2022-12-27 格式:DOC 页数:11 大小:292.54KB
返回 下载 相关 举报
2023年七年级下数学平面直角坐标系知识点总结.doc_第1页
第1页 / 共11页
2023年七年级下数学平面直角坐标系知识点总结.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2023年七年级下数学平面直角坐标系知识点总结.doc》由会员分享,可在线阅读,更多相关《2023年七年级下数学平面直角坐标系知识点总结.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级下数学第七章 平面直角坐标系知识点总结一、本章的重要知识点(一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b); 2、注意:a、b的先后顺序对位置的影响。3、坐标平面上的任意一点P的坐标,都和惟一的一对 有序实数对() -3 -2 -1 0 1 ab1-1-2-3P(a,b)Yx一一相应;其中,为横坐标,为纵坐标坐标;4、轴上的点,纵坐标等于0;轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;(二) 平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形

2、; 2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向 竖直的数轴称为y轴或纵轴,取向上方向为正方向 两坐标轴的交战为平面直角坐标系的原点 3、各种特殊点的坐标特点。象限:坐标轴上的点不属于任何象限 第一象限:x0,y0 第二象限:x0 第三象限:x0,y0,y0 横坐标轴上的点:(x,0) 纵坐标轴上的点:(0,y)象限横坐标纵坐标第一象限正正第二象限负正第三象限负负第四象限正负(三)坐标方法的简朴应用 1、用坐标表达地理位置; 2、用坐标表达平移。二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐

3、标相同。a) 在与轴平行的直线上, 所有点的纵坐标相等;YABB 点A、B的纵坐标都等于; XYXb) 在与轴平行的直线上,所有点的横坐标相等;CD 点C、D的横坐标都等于;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。c) 若点P()在第一、三象限的角平分线上,则,即横、纵坐标相等;d) 若点P()在第二、四象限的角平分线上,则,即横、纵坐标互为相反数;yPOXXyPO 在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对

4、称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P关于轴的对称点为, 即横坐标不变,纵坐标互为相反数;f) 点P关于轴的对称点为, 即纵坐标不变,横坐标互为相反数;XyPOXyPOXyPOg) 点P关于原点的对称点为,即横、纵坐标都互为相反数; 关于x轴对称 关于y轴对称 关于原点对称五、特殊位置点的特殊坐标:坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原点平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x

5、0y0x0y0x0y0x0y0(m,m)(m,-m)六、运用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: 建立坐标系,选择一个适当的参照点为原点,拟定x轴、y轴的正方向; 根据具体问题拟定适当的比例尺,在坐标轴上标出单位长度;P(x,y)P(x,ya)P(xa,y)P(xa,y)P(x,ya)向上平移a个单位长度向下平移a个单位长度向右平移a个单位长度向左平移a个单位长度 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。七、用坐标表达平移:见下图八 、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。即A(x,y),到x轴的距离=|y|,到y轴

6、的距离=|x|例、若点A到x轴的距离为5,到y轴的距离为4则A的坐标为分析:到x轴的距离为5说明点A的|纵坐标|=5,则纵坐标为5或-5,到y轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。综述,点A的坐标为(4,5)、(4,-5)、(-4,5)、(-4,-5)。类似的,若点M到x轴的距离为3,到y轴的距离为6,且在第二象限,则点M坐标为(前两个条件的分析方法同样,可和四个分类,再加上点M在第二象限,可知点M坐标符号为(-,+),便可拟定答案。)九、对称两点的坐标特性:1、关于x轴对称两点:横坐标相同,纵坐标互为相反数。2、关于y轴对称两点:横坐标互为相反数,纵坐标相同。3、关于原点对称

7、两点:横、纵坐标均互为相反数。即:若A(a,b),B(a,-b),则A与B关于x轴对称,若A(a,b),B(-a,b),则A与B关于y轴对称。若A(a,b),B(-a,-b),则A与B关于原点对称二、经典例题知识一、坐标系的理解例1、平面内点的坐标是( ) A 一个点 B 一个图形 C 一个数 D 一个有序数对知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy0第二、 四象限角平分线上的点的横纵坐标相反(即在y=

8、-x直线上);坐标点(x,y)xy0例1 点P在轴上相应的实数是,则点P的坐标是 ,若点Q在轴上 相应的实数是,则点Q的坐标是 , 例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是。学生自测1、点P(m+2,m-1)在y轴上,则点P的坐标是 .2、已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。3、 已知:A(1,2),B(x,y),ABx轴,且B到y轴距离为2,则点B的坐标是 .4平行于x轴的直线上的点的纵坐标一定()A大于0B小于0C相等D互为相反数 (3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .(3)已知点P(x2-3,1)在一

9、、三象限夹角平分线上,则x= .5过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( ) A(0,2) B(2,0)C(0,-3)D(-3,0)6假如直线AB平行于y轴,则点A,B的坐标之间的关系是( ) A横坐标相等 B纵坐标相等C横坐标的绝对值相等 D纵坐标的绝对值相等知识点三:点符号特性。点在第一象限时,横、纵坐标都为 ,点在第二象限时,横坐标为 ,纵坐标为 ,点有第三象限时,横、纵坐标都为 ,点在第四象限时,横坐标为 ,纵坐标为 ;y轴上的点的横坐标为 ,x轴上的点的纵坐标为 。例1 .假如ab0,且ab0,那么点(a,b)在( )A、第一象限 B、第二象限 C、第三象限

10、, D、第四象限.例2、假如0,那么点P(x,y)在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测1.点的坐标是(,),则点在第 象限2、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是 。3点 A在第二象限 ,它到 轴 、轴的距离分别是 、,则坐标是 ;4. 若点(x,y)的坐标满足xy,则点在第 象限;若点(x,y)的坐标满足xy,且在x轴上方,则点在第 象限若点P(a,b)在第三象限,则点P(a,b1)在第 象限;5若点P(, )在第二象限,则下列关系对的的是 ( )A. B. C. D.6点(,)不也许在

11、( )A.第一象限B.第二象限C.第三象限 D.第四象限7已知点P(,)在第三象限,则的取值范围是 ( )A . B.35 C.或 D.5或3 (02包头市)8设点P的坐标(x,y),根据下列条件鉴定点P在坐标平面内的位置:(1);(2);(3)(2)点A(1-)在第 象限.(3)横坐标为负,纵坐标为零的点在( ) (A)第一象限 (B)第二象限 (C)X轴的负半轴 (D)Y轴的负半轴(4)假如a-b0,且ab0,那么点(a,b)在( )(A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限.(5)已知点A(m,n)在第四象限,那么点B(n,m)在第 象限(6)若点P(3a-9,1

12、-a)是第三象限的整数点(横、纵坐标都是整数),那么a= 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。过点作x轴的 线,垂足所代表的 是这点的横坐标;过点作y轴的垂线,垂足所代表的实数,是这点的 。点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。例1、X轴上的点P到Y轴的距离为2.5,则点的坐标为() (2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)学生自测1、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。2.若点的坐标是(,),则它到x轴的

13、距离是 ,到y轴的距离是 3.点到x轴、y轴的距离分别是、,则点的坐标也许为 。4已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A(3,2) B(-3,-2) C(3,-2) D(2,3),(2,-3),(-2,3),(-2,-3)5若点P(,)到轴的距离是,到轴的距离是,则这样的点P有 ( ).个 .个 .个.个6.已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标 . 7已知等边ABC的两个顶点坐标为A(-4,0),B(2,0),求:(1)点C的坐标;(2)ABC的面积知识点五:对称点的坐标特性。关于x对称的点,横坐标不 ,

14、纵坐标互为 ;关于y轴对称的点, 坐标不变, 坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。例1. 已知A(3,5),则该点关于x轴对称的点的坐标为_;关于y轴对的点的坐标为_;关于原点对称的点的坐标为_;关于直线x=2对称的点的坐标为_。例2. 将三角形ABC的各顶点的横坐标都乘以,则所得三角形与三角形ABC的关系()A关于x轴对称B关于y轴对称C关于原点对称D将三角形ABC向左平移了一个单位学生自测1在第一象限到x轴距离为4,到y轴距离为7的点的坐标是_;在第四象限到x轴距离为5,到y轴距离为2的点的坐标是_;3.点A(-1,-3)关于x轴对称点的坐标是 .关于原点对称的点坐标是

15、。4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .5已知:点P的坐标是(,),且点P关于轴对称的点的坐标是(,),则;6点P(,)关于轴的对称点的坐标是 ,关于轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;7若 关于原点对称 ,则 ;8已知,则点(,)在 ;9直角坐标系中,将某一图形的各顶点的横坐标都乘以,纵坐标保持不变,得到的图形与原图形关于_轴对称;将某一图形的各顶点的纵坐标都乘以,横坐标保持不变,得到的图形与原图形关于_轴对称10点A(,)关于轴对称的点的坐标是 ( )A.(,) B. (,) C . (, ) D. (, )11点P(,)关于原点的对称点的坐标是

16、 ( )A.(,) B (,) C (,) D. (,)12在直角坐标系中,点P(,)关于轴对称的点P1的坐标是 ( )A (,) B. (,) C. (, )D. (,)知识点六:运用直角坐标系描述实际点的位置。需要根据具体情况建立适当的平面直角坐标系,找出相应点的坐标。知识点七:平移、旋转的坐标特点。在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到相应点(x+a,y) 向左平移a个单位长度,可以得到相应点(x-a,y) 向上平移b个单位长度,可以得到相应点(x,y+b) 向下平移b个单位长度,可以得到相应点(x,y-b)图形向左平移m个单位,纵坐标不变,横坐标 m个单位;图形向右平移m个单位,纵坐标不变,横坐标 m个单位;图形向上平移个单位,横坐标 ,纵坐标增长n个单位;向下平移n个单位, 不变, 减小n个单位。旋转的情形,同学们自己归纳一下。例1. 三角形ABC三个顶点A、B、C的坐标分别为A(2,1)、B(1,3)、C(4,3.5)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M(1,0)向右平移3个单位,得到点,则点的坐标为_

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁