《教育专题:第2课时实数的运算.ppt》由会员分享,可在线阅读,更多相关《教育专题:第2课时实数的运算.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、R七年级下册七年级下册第第2课时课时 实数的运算实数的运算 学习目标:学习目标:(1)理解实数的相反数、绝对值的意义,会求)理解实数的相反数、绝对值的意义,会求一个实数的相反数和绝对值一个实数的相反数和绝对值.(2)会比较实数的大小)会比较实数的大小.(3)知道有理数的运算法则和运算性质等在实)知道有理数的运算法则和运算性质等在实数范围内仍成立,会进行简单的实数运算数范围内仍成立,会进行简单的实数运算.学习重、难点:学习重、难点:重点:重点:实数的运算实数的运算.难点:难点:运算律和运算性质在实数运算中的运用运算律和运算性质在实数运算中的运用.情景导入情景导入 把有理数扩充到实数之后,有理数关
2、于相反把有理数扩充到实数之后,有理数关于相反数和绝对值的意义,大小比较以及运算法则和运数和绝对值的意义,大小比较以及运算法则和运算律等同样适合于实数,这节课我们就来学习这算律等同样适合于实数,这节课我们就来学习这些内容些内容.探究新知探究新知知识点1相反数与绝对值相反数与绝对值相反数与绝对值相反数与绝对值思考思考有理数关于相反数和绝对值的意义同样适用于实数有理数关于相反数和绝对值的意义同样适用于实数.(1)的相反数是的相反数是_,-的相反数的相反数是是_,0的相反数是的相反数是_;0(2)|=_,|-|=_,|0|=_.0数数 a 的相反数是的相反数是 a,任意一个实数任意一个实数 一个正实数
3、的绝对值是它本身;一个负实数一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;的绝对值是它的相反数;0的绝对值是的绝对值是0|a|=a,当,当a 0时;时;a,当,当a 0时时.0,当,当a=0时;时;例例1 (1)分别写出)分别写出 ,3.14的相反数;的相反数;解:解:(1)因为)因为(3.14)=3.14 所以,所以,3.14的相反数为的相反数为 ,3.14 (2)指出)指出 ,分别是什么数的相反数;分别是什么数的相反数;(2)因为)因为所以,所以,分别是分别是 ,的相反数的相反数.(3)求)求 的绝对值;的绝对值;(3)因为)因为所以所以(4)已知一个数的绝对值是)已知一个数
4、的绝对值是 ,求这个数,求这个数.(4)因为)因为所以绝对值是所以绝对值是 的数是的数是 或或 .练习1.求下列各数的相反数与绝对值求下列各数的相反数与绝对值.2.50相相反反数数绝绝对对值值 2.52.5002.求下列各式中的实数求下列各式中的实数x.(1)|x|=(2)|x|=0(3)|x|=(4)|x|=知识点2实数的运算实数的运算实数的运算实数的运算 实数之间不仅可以进行加减实数之间不仅可以进行加减乘除(除数不为乘除(除数不为0)、乘方运算,)、乘方运算,而且正数及而且正数及0可以进行开平方运可以进行开平方运算,任意一个实数可以进行开立算,任意一个实数可以进行开立方运算方运算.在进行实
5、数的运算时,在进行实数的运算时,有理数的运算性质等同样适用有理数的运算性质等同样适用.例例2 计算下列各式的值计算下列各式的值.(1)(2)解:解:在实数运算中,当遇到无理数并且要求求出在实数运算中,当遇到无理数并且要求求出结果的近似值时,可以按照所要求的精确度用相结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算应的近似有限小数去代替无理数,再进行计算.例例3 计算(结果保留小数点后两位)计算(结果保留小数点后两位)(1)(2)解:解:(1)2.236+3.142 5.38(2)1.7321.414 2.45练习 1.计算计算.(1)(2)误误区区诊诊断断误区
6、一:没有掌握实数的运算律误区一:没有掌握实数的运算律误区一:没有掌握实数的运算律误区一:没有掌握实数的运算律 例例1 计算计算错解:错解:错解:错解:原式原式=正解:正解:正解:正解:原式原式=错因分析:错因分析:错因分析:错因分析:本题错将乘法结合律用在乘除本题错将乘法结合律用在乘除混合运算上了混合运算上了.对于这类同级运算,应该按从左对于这类同级运算,应该按从左到右的顺序进行计算,乘除混合运算通常先将到右的顺序进行计算,乘除混合运算通常先将除法转变为乘法再计算除法转变为乘法再计算.基础巩固基础巩固随堂演练随堂演练1.填表填表.实数实数相反数相反数绝对值绝对值222.计算计算(1)(1)解:
7、解:=0综合运用综合运用 3.若若a2=25,|b|=3,则则a+b的的所所有有可可能能值值为(为()DA.8 B.8或或2C.8或或-2D.8或或24.计算计算.课堂小结课堂小结 在在进进行行实实数数运运算算时时,有有理理数数的的运运算算法法则则及及运算性质等同样运用运算性质等同样运用.近近似似计计算算时时,计计算算过过程程中中所所取取的的近近似似值值要要比题目要求的精确度多取一位小数比题目要求的精确度多取一位小数.0102小结伸延展拓 要要生生产产一一种种容容积积为为36L的的球球形形容容器器,这这种种球球形形容容器器的的半半径径是是多多少少分分米米?(球球的的体体积积公公式式是是V=R3
8、,其中,其中R是球的半径)是球的半径)解:由解:由V=R3得得,36=R3,R3=27,R=3(dm).答:这种球形容器的半径是答:这种球形容器的半径是3dm.1.从课后习题中选取;从课后习题中选取;2.完成练习册本课时的习题。完成练习册本课时的习题。课后作业课后作业教学反思教学反思 本课时教学应从学生已有的认识出发,借助本课时教学应从学生已有的认识出发,借助有理数知识,拓展延伸到实数范围内的知识认识,有理数知识,拓展延伸到实数范围内的知识认识,注重学生间的自主探究、交流,从而完成对实数注重学生间的自主探究、交流,从而完成对实数知识的理解知识的理解.实数的运算是有理数运算的扩展,引领学生实数的运算是有理数运算的扩展,引领学生适时地把有理数的运算法则延伸到实数运算领域,适时地把有理数的运算法则延伸到实数运算领域,理解二者间的联系与区别理解二者间的联系与区别.习题习题6.36.3复习巩固复习巩固综合运用综合运用拓广探索拓广探索