教育专题:523平行线的性质.ppt

上传人:s****8 文档编号:67279441 上传时间:2022-12-24 格式:PPT 页数:27 大小:1.60MB
返回 下载 相关 举报
教育专题:523平行线的性质.ppt_第1页
第1页 / 共27页
教育专题:523平行线的性质.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《教育专题:523平行线的性质.ppt》由会员分享,可在线阅读,更多相关《教育专题:523平行线的性质.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、3 3 平行线的性质平行线的性质1.1.掌握平行线的性质掌握平行线的性质2.2.能应用平行线的性质计算角度或辨别角之间的关系能应用平行线的性质计算角度或辨别角之间的关系3.3.能综合运用平行线的性质与判定进行简单的推理,提能综合运用平行线的性质与判定进行简单的推理,提高对几何语言的认识,发展逻辑推理能力高对几何语言的认识,发展逻辑推理能力问题问题1 1:如图一束平行光线如图一束平行光线ABAB和和DEDE射向一个水平镜面射向一个水平镜面后被反射,此时后被反射,此时1,31,3的大小有什么关系?的大小有什么关系?1 12 23 34 4B B B BE E E EA A A AC C C CD

2、D D DF F F F你知道理由吗?你知道理由吗?水平方向水平方向水平方向水平方向12问题问题2 2:当两人目光相对时:当两人目光相对时,视线与水视线与水平方向的夹角平方向的夹角1 1与与2 2相等吗?相等吗?探索:两直线平行,同位角有什么关系探索:两直线平行,同位角有什么关系?探索探索:两直线平行,内错角两直线平行,内错角、同旁内角又有什么关系同旁内角又有什么关系?探究活动探究活动1 1探究活动探究活动2 2活动要求:活动要求:利用坐标纸上的直线或者用直尺利用坐标纸上的直线或者用直尺和三角尺画两条平行线和三角尺画两条平行线a,ba,b,然,然后,画一条截线后,画一条截线c c与这两条平行线

3、与这两条平行线相交,标出如图的角相交,标出如图的角;(1)(1)探索探索:两直线平行,同位角有什么关系两直线平行,同位角有什么关系?探究活动探究活动1 1度量这些角,把结果填入下表度量这些角,把结果填入下表;你发现你发现各对各对同位角同位角的度数之间有什么关系?写出你的的度数之间有什么关系?写出你的猜想猜想再任意画一条截线再任意画一条截线d d,同样度量并计算各个角的同样度量并计算各个角的度数,你的猜想还成立度数,你的猜想还成立吗?(要求学生多画几条吗?(要求学生多画几条截线来验证)截线来验证)()验证验证“两直线平行,同位角相等两直线平行,同位角相等”度量法度量法a ab bc cd d叠合

4、法叠合法 c ca ab b()问题:如果直线问题:如果直线a a与与b b不平行,你的猜想还成立吗?不平行,你的猜想还成立吗?结论:结论:如果直线如果直线a a与与b b不平行不平行,同位角则不相等同位角则不相等.一般地,平行线具有的性质:一般地,平行线具有的性质:性质性质1 1 两条平行线被第三条直线所截,同位角相等两条平行线被第三条直线所截,同位角相等以上性质可简单说成:以上性质可简单说成:两直线平行,同位角相等两直线平行,同位角相等abab,1 12.2.()归纳概括:你能否将你得到的结论用数学语言表述?归纳概括:你能否将你得到的结论用数学语言表述?问题:你用什么方法验证你的猜想?问题

5、:你用什么方法验证你的猜想?(学生当学生当“小老师小老师”角色)角色)()探索探索:两直线平行,内错角、同旁内角又有什么关系?两直线平行,内错角、同旁内角又有什么关系?探究活动探究活动2 2一般地,平行线具有的性质:一般地,平行线具有的性质:性质性质1 1 两条平行线被第三条直线所截,两条平行线被第三条直线所截,同位角相等同位角相等性质性质2 2 两条平行线被第三条直线所截,两条平行线被第三条直线所截,内错角相等内错角相等性质性质3 3 两条平行线被第三条直线所截,两条平行线被第三条直线所截,同旁内角互补同旁内角互补(2)(2)归纳概括归纳概括以上性质可简单说成:以上性质可简单说成:两直线平行

6、,内错角相等两直线平行,内错角相等abab,2 23.3.两直线平行,同旁两直线平行,同旁内角互补内角互补abab,2+4 2+4 180180.两直线平行,同位角相等两直线平行,同位角相等abab,1 12.2.思考思考1 1:你能根据性质你能根据性质1“1“两直线平行,同位角相等两直线平行,同位角相等”推出推出“两直线平行,内错角相等两直线平行,内错角相等”吗?吗?能能说明:说明:如图,如图,abab(已知),(已知),1 1 2 2(两直线平行,同位角相等)(两直线平行,同位角相等).又又 3 31 1(对顶角相等),(对顶角相等),2 2 3.3.(3)(3)推理论证推理论证思考思考2

7、:2:你能根据性质你能根据性质1“1“两直线平行,同位角相等两直线平行,同位角相等”推出推出“两直线平行,同旁内角互补两直线平行,同旁内角互补”吗?吗?能能说明:说明:如图,如图,abab(已知),(已知),1 12 2(两直线平行,同位角相等两直线平行,同位角相等 ).).又又 1 14 4180180,2 24 4180180.【例例1 1】如图,已知直线如图,已知直线abab,1=501=50,求,求2 2的度数的度数.【解析解析】abab,1=21=2(两直线平行,内错角相等)(两直线平行,内错角相等).1=50 1=50,2=502=50.【例题例题】【例例2 2】如图,在四边形如图

8、,在四边形ABCDABCD中,已知中,已知ABCDABCD,B=60B=60,求,求C C的度数的度数.能否求得能否求得A A的度数?的度数?【解析解析】ABCDABCD,B+C=180B+C=180(两直线平行,同旁内角互补)(两直线平行,同旁内角互补).B=60 B=60,C=120C=120.根据题目的已知条件,无法求出根据题目的已知条件,无法求出A A的度数的度数.1.1.完成并比较如图,完成并比较如图,(1)ab(1)ab(已知已知),1_2(1_2().).(2)(2)abab(已知已知),2_3().2_3().(3)ab(3)ab(已知已知),2 24 4_()._().=两直

9、线平行,同位角相等两直线平行,同位角相等 =两直线平行,内错角相等两直线平行,内错角相等 180 180 两直线平行,同旁内角互补两直线平行,同旁内角互补【跟踪训练跟踪训练】.如图,直线如图,直线abab,1 15454,那么,那么2,3,2,3,4 4 各是多少度?各是多少度?答案:答案:2 2 54543 3 1261264 4 5454a ab b1 12 23 34 41 1(成都(成都中考)如图,已知中考)如图,已知ABABED,ECF=65,ED,ECF=65,则则BACBAC的度数为(的度数为()A.115 A.115 B.65B.65C.60 C.60 D.25D.25B B2

10、 2(中山(中山中考)如图,已知中考)如图,已知1=70 1=70,如果,如果CDBECDBE,那么,那么B B的度数为(的度数为()A.70 B A.70 B 100 C100 C110 110 D D120 120 C C.(郴州(郴州中考)下列图形中,由中考)下列图形中,由ABABCD CD,能得到,能得到1=21=2的是()的是().如图,已知如图,已知AGAGCFCF,ABABCDCD,A A4040,求,求C C的度数的度数.FABCDEG解析解析:AG AGCF(CF(已知已知),A AAEC (AEC (两直线平行,内错角相等两直线平行,内错角相等).).AB ABCD(CD(已知已知),C CAEC (AEC (两直线平行,内错角相等两直线平行,内错角相等).).C CA A4040.A A4040,C CA(A(等量代换)等量代换).还有其他方法吗?还有其他方法吗?两直线平行两直线平行判定判定性质性质 已知已知 得到得到 得到得到 已知已知平行线的性质与平行线的判定的联系与区别:平行线的性质与平行线的判定的联系与区别:同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补 任何人都可以成为自己想成为的那种人,任何人都可以实现自己的愿望,只要你愿意!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁